
Notice

This paper is the author’s draft and has now been published officially as:

Ciortuz Liviu, Saveluc Vlad (2012). Fluid Construction Grammar and Feature
Constraint Logics. In Luc Steels (Ed.), Computational Issues in Fluid Construc-
tion Grammar, 289–311. Berlin: Springer.

BibTeX:

@incollection{ciortuz2012fcg,
Author = {Ciortuz, Liviu and Saveluc, Vlad},
Title = {Fluid Construction Grammar and Feature Constraint Logics},
Pages = {289--311},
Editor = {Steels, Luc},
Booktitle = {Computational Issues in {Fluid Construction Grammar}},
Publisher = {Springer},
Series = {Lecture Notes in Computer Science},
Volume = {7249},
Address = {Berlin},
Year = {2012}}

Fluid Construction Grammar and Feature
Constraint Logics

Liviu Ciortuz and Vlad Saveluc

Department of Computer Science, “Al.I. Cuza” University, Iaşi, Romania

Abstract. Fluid Construction Grammars (FCGs) are a flavor of Con-
struction Grammars, which are themselves unification-based grammars.
The FCG syntax is similar to that of other unification-based grammars
only to a small extent. Additionally, up until now, FCG has lacked a
comprehensively-defined declarative semantics, whereas its procedural
semantics is truly particular compared to other unification-based gram-
mar formalisms.
Here we propose the re-definition of a core subset of the FCG formal-
ism (henceforth called FCG light) within the framework of order-sorted
feature constraint logics (OSF-logic) that would assign FCG a rigorous
semantics, both declarative and procedural, that is suitable for both
parsing, production and grammar learning.
This new framework allows us to clearly compare FCG to other unification-
based grammars. We will also have the advantage of associating FCG
with another classical paradigm for learning (“evolving”) new grammars,
namely learning in hierarchies (lattices) of concepts. This learning tech-
nique exploits the natural partial order relation of generalization/ spe-
cialization between grammars. The learning method currently used by
FCG, is (inspired by) reinforcement learning. We claim that learning in
a hierarchy of grammar versions enables us to establish a rather natural
link with linguistic background knowledge when devising the grammar
repair strategies. It also sets a stage on which we may compare different
grammars that could be learned by an agent at each step during the
grammar evolution process.

1 Introduction

Here we present FCG light, a core subset of Fluid Construction Grammars intro-
duced by [33] [15] [34] which is currently implemented on a simplified version of
the LIGHT platform [9].

The LIGHT system was developed with the explicit aim of doing efficient pro-
cessing of HPSG-like unification grammars[25], but it is by no means restricted to
working with HPSGs.1 LIGHT comprises several feature structure (FS) unifiers2

1 HPSG stands for Head-driven Phrase Structure Grammars.
2 More exactly, LIGHT currently has 6 unifiers, of both typed and un-typed kinds: a.
non-compiled (lazy) typed unification, b. compiled (eager) typed unification, c. com-
piled (eager) typed unification specialized for active, bottom-up, chart-based parsing
and their un-typed counterparts (a′, b′, c′). For technical details, the interested reader
should consult [12].

FCG and Feature Constraint Logics 3

and a control level (actually performing active bottom-up chart-based parsing)
upon the unification level. An important number of optimizations were incorpo-
rated into the LIGHT system. In the past these optimizations were fine-tuned so
as to achieve efficient parsing with ERG [17], the large-scale HPSG grammar for
English developed at CSLI, Stanford University.

The present work leads to defining FCG light as a new flavor of unification
grammars, which is derived from the FCG formalism and is transposed into the
LIGHT setup, thus benefitting from a rigorous semantics (both a declarative and
a procedural one) based on OSF-logic, which was introduced in [3] and [1].3

We argue that by using this logic-based semantics we are able to:

– redefine the procedural semantics of the chosen subset of FCG and associate
it with a declarative semantics which we claim is not clearly visible in the
FCG setup;

– gain certain benefits through this framework arising from the natural partial
order relation between grammars defined via generalization/specialization;

– replace grammar learning, as a consequence of the above issue, in FCG
(which is based on the reinforcement learning paradigm) through learning
in a lattice of grammars. We argue that the latter paradigm is more natu-
rally suitable for integrating linguistic background knowledge, and it leads
to more efficient learning because it enables us to define certain heuristics
that are very helpful for guiding the search for appropriate (rule) candidates
in the grammar lattice;

– in certain conditions,4 define parsing and production in FCG light in a declar-
ative manner (as it is the case of unification grammars, in particular head-
driven grammars).

This paper is organized as follows: Section 2 makes a review of the (core) FCG
formalism from the feature constraint point of view. Section 3 goes through the
details of FCG light language’s definition, at both syntactic and semantic levels.
Section 4 is concerned with grammar learning aspects in FCG light. Section 5
scrutinizes several tasks that we have planned, demonstrating further usefulness
of FCG light.
3 OSF-logic is closely related to Carpenter’s logic of typed feature structures [5]. It has
been associated with an abstract machine for compilation of FS unification [2], which
was further extended by [10] to compiled typed FS unification. OSF is not concerned
with appropriateness constraints; however, we have shown that in certain conditions
one could automatically infer these constraints from the given input grammar [7].
For a good introduction to feature constraint logics, the reader should consult [31].

4 When constraint reduction actions (see Section 3.1) are performed in “soft” mode,
they do not affect logical entailment. This is why in FCG light the reduction operation
is replaced (at unification level) by constraint marking for deletion (to be cared of
by the parser/producer).

4 L. Ciortuz, V. Saveluc

((?top-unit
(tag ?meaning (meaning (== (read ?event)

(reader ?event ?agent)))))
((J ?verb-unit ?top-unit)
?meaning
(referent ?event)
(sem-cat (==1 (base-type ?event event)))))

<-->
((?top-unit

(tag ?form (form (== (string ?verb-unit "cita")))))
((J ?verb-unit ?top-unit)
?form
(syn-cat (==1 (pos verb)

(gender ?agent ?agent-gender)
(case ?object accusative)))))

Fig. 1. An FCG construction that acts as lexical entry for the Russian verb “cita”,
similar to the verb “risova” presented by [18], Chapter 3.

2 FCG revisited: A feature constraint-based perspective

Here we summarize the basic notions in the FCG formalism, relative to both its
syntax and procedural semantics.

An FCG grammar is a set of structures called constructions, which are writ-
ten in the FCG format, as exemplified in Figure 1. Unlike FCG authors [32] [14],
here we give a constraint-based view on the definition of construction struc-
tures. To this aim, we need some basic notions of feature constraint logics. We
briefly describe them here, yet without going into formal details. Elementary con-
straints considered here are of three kinds: sort constraints, feature constraints
and equality constraints.5

It is useful to make the following preliminary remark:
In HPSG/LIGHT rules are expressed simply as FSs, enabling the user to em-

ploy a unique formalism for both the grammar rules and the structures to which
they apply. However, in FCG formalisms, the constructions that express rules
differ from the structures to which they are applied, namely the coupled feature
structures. This difference is due to the fact that certain operations — beyond
the level of deductive parsing and production — that have to be performed by
the parser/producer are specified in the constructions representing rules.
5 In FCG light, like in other formalisms, the equality constraints are not explicitly
used at the syntax level. Instead they are automatically derived while building cer-
tain variable substitutions, i.e. during operations manipulating the FSs: subsump-
tion, unification (computation of the GLB for two FSs), and generalization (LUB
computation).

FCG and Feature Constraint Logics 5

syn
top

sem

(form (string cita−4 "cita"))

top

cita−4

(reader ?event−5 ?agent−5))
meaning ((read ?event−5)

referent ?event−5

sem−cat ((base−type ?event−5 event))

(form (string cita−4 "cita"))

(syn−cat (pos verb)

(gender ?agent−5 ?agent−gender−5))

(case ?object−5 accusative))

cita−4

syn
top top

sem

Fig. 2. Two simple couple feature structures. The lower CFS is obtained from the
upper one by application of the construction given in Figure 1 in parsing mode.

This fact unfortunately leads to the disruption in FCG of the really nice cor-
respondence between declarative and procedural semantics and also the orthog-
onality between the unifier level and the parser/producer level that characterize
main-stream unification grammars, in particular HPSGs. This disruption seems
to be the price to be paid by FCG for the benefit of offering the grammar writer
the capacity to play with subtleties in the learning (evolvable) grammars.

Similar to HPSG/LIGHT, in defining FCG light we aim to reduce to a mini-
mum (and, in certain conditions, even eliminate) the difference between the form
of rules and the CFSs to which they apply, thus enabling our parser/producer
to work very smoothly.

At this point, we can provide a set of informal definitions that can be seen
as constraint-based alternatives to the ones that have been introduced in [34]:

A coupled feature structure (CFS) can be seen as a set of elementary con-
straints, partitioned into two disjoint subsets named poles. These poles are usu-
ally referred to as the syntactic pole and the semantic pole (more generally: the
left pole and the right pole) of the given CFS. Each of the two poles further
partitions its set of elementary constraints into several units. The units in a CFS
are explicitly linked into a graph (usually a tree) using the multi-valued features
syn-subunits (in the syntactic pole) and sem-subunits (in the semantic pole).
Further on, each unit partitions its set of elementary constraints under several
slots.

To illustrate the above notions, consider the CFS shown in the lower part of
Figure 2, in which the top-unit has as sub-unit the verb-unit, and examples of
slots in the latter unit are syn-cat and sem-cat.6 The FCG constraints (read
?event-5) and (base-type ?event-5 event) correspond in OSF-logic to the
elementary sort constraint #event-5:read and respectively the feature constraint
#event-5.base-type ⇒ event.
6 The reader will see that this CFS can be obtained from the very simple CFS shown
in the upper part of Figure 2 by the application of the FCG construction in Figure 1
in parsing mode.

6 L. Ciortuz, V. Saveluc

CFSs and constructions in FCG are characterized by a certain, de facto
user-specified correspondence between syntax and semantics. This correspon-
dence starts with the meaning and form constraints in a top-unit and is down-
propagated to the other units via parsing and production.

Basically, the set of elementary constraints that constitute a CFS can be
treated in either match/subsumption mode or merge/unification mode. The ac-
tual way in which the elementary constraints are processed is dependent on the
parsing or production process (not detailed here) carried by the application of
construction rules [14] [4].

The notion of construction extends the definition given above for CFS by
adding the following:

– two operators, namely:
the J operator that (indirectly) indicates syn/sem-subunits constraints
and also separates the merge zone from the match zone in a pole;
the tag operator that indicates a substructure (set of elementary con-
straints) to be deleted and eventually moved elsewhere;

– several restrictors (’==1’, ’==0’, etc.), which can be seen as meta-constraints
to be checked while the match and merge operations are performed. For fur-
ther details, the reader should consult [34].

In FCG, the scope of the match and merge operations is limited to slots. In
FCG light we replace slots with features, whose values are implicitly >-sorted,
where > is the top sort in the sort hierarchy.7 In FCG light the constraints asso-
ciated with a slot must represent a rooted feature structure.

Similar to the LIGHT system, in FCG light we make no use of negation ((0==)
in FCG), whereas the single-valued restriction ((1==) in FCG) is considered
implicit for feature constraints.8 Multi-valued features (designated using the
=>> symbol) are restricted to SYN-SUBUNITS and SEM-SUBUNITS.9 The
treatment of these two features is reserved for the parser and the producer. In
FCG light, features names are always capitalized.

Two additional features SYN and SEM, corresponding to the two poles in a
CFS are introduced.10 A syntactico-semantic graph, henceforth abbreviated as
syn-sem graph, can be derived from each CFS. The notion of syn-sem graph is
used in the sequel as an alternative/replacement for the notion of CFS.

From the restrictions and syntactic transformations listed above, it follows
that a CFS in FCG can be naturally written as a FS in OSF/LIGHT.
7 For these slot-derived features, appropriateness constraints [5] with corresponding
new sort values can be further added.

8 Therefore, the symbol ⇒ in OSF functional constraints is dropped.
9 Multi-valued features are found, for instance, in F-logic [21]. OSF-logic can be nat-
urally extended so as to accommodate such features.

10 These features are not (necessarily) shown in the sequel, if the sets of syntactic slots
and semantic slots are disjoint.

FCG and Feature Constraint Logics 7

production

precond.]top-unit.MEANING =]event,]event:read,
]event.READER =]agent

reduction]top-unit.MEANING =]event,]event:read,]event.READER =]agent

main
]top-unit.SEM-SUBUNITS3]verb-unit,]verb-unit.MEANING=]event,
]event:read,]event.READER =]agent,]verb-unit.REFERENT =]event,
]verb-unit.SEM-CAT =]1,]1.BASE-TYPE(]event) =]2,]2:event

parsing

precond.]top-unit.FORM3]verb-unit,]verb-unit.STRING =]1,]1:"cita"

reduction]top-unit.FORM3]verb-unit,]verb-unit.STRING =]1,]1:"cita"

main

]top-unit.SYN-SUBUNITS3]verb-unit,]verb-unit.STRING =]1,
]1:"cita",]verb-unit.SYN-CAT =]2,]2:verb, verb:pos,
]2.GENDER(]agent) =]agent-gender,]2.CASE(]object) =]3,
]3:accusative

Fig. 3. The sets of elementary constraints used in production and respectively parsing
with the “cita” lexical entry given in Figure 1. The hash symbol (#) introduces variables,
while the colon (:) precedes the sort of a variable (or a supersort of a sort). The
symbols = and 3 designate values for single-valued features and respectively multi-
valued features. Feature names are written in upper case.

3 FCG light language definition

Here we formally introduce in Subsection 3.1 the syntax of the FCG light sub-
set of FCG, basically showing how constructions in FCG get translated into
the OSF/LIGHT syntax (which in the past also supported HPSG grammars).
Then, in Subsection 3.2, we introduce the two basic aspects of FCG light seman-
tics — the declarative one and the procedural one —, that further support the
FS subsumption and FS unification operations used in parsing, production and
grammar learning.

3.1 FCG light syntax

Now we will (re)define for FCG light the notion of construction by getting it
as close as possible to the notion of FS in OSF/LIGHT. (Re)defining the notion
of construction for FCG light requires getting it as close as possible to the notion
of FS in OSF/LIGHT.

8 L. Ciortuz, V. Saveluc

production

precond. #top-unit[MEANING =>> #event:read
[READER #agent]]

reduction
#top-unit[MEANING =>> #event:read

[READER #agent[TO-BE-REDUCED +],
TO-BE-REDUCED +]]

main

#top-unit
[SEM-SUBUNITS =>> #verb-unit

[MEANING #event:read
[READER #agent],

REFERENT #event,
SEM-CAT top

[BASE-TYPE(#event) event]]]

parsing

precond. #top-unit[FORM =>> #verb-unit[STRING "cita"]]

reduction
#top-unit[FORM =>> #verb-unit[STRING "cita"

[TO-BE-REDUCED +],
TO-BE-REDUCED +]]

main

#top-unit
[SYN-SUBUNITS =>> #verb-unit

[STRING "cita",
SYN-CAT verb:pos

[GENDER(#agent) #agent-gender,
CASE(#object) accusative]]]

Fig. 4. The OSF rooted terms (FSs) corresponding to the sets of elementary constraints
identified for the “cita” lexical entry (Figure 1), that have been shown in Figure 3.
Compared to Figure 3, here above we did not show OSF variables that occur only once.
Also, multi-valued feature constraints corresponding to the J operator were added; see
the SYN-SUBUNITS and SEM-SUBUNITS features.

Definition: In FCG light, a construction is a set of elementary (i.e. atomic)
constraints which is divided into the following two (not necessarily disjoint)
triplets of sets:

– a set of precondition constraints, a set of constraints marked for reduction
actions and the set of main constraints used for parsing,

– a set of precondition constraints, a set of constraints marked for reduction
actions and the set of main constraints used for production.

In FCG light we explicitly impose the following restrictions:11 For both pars-
ing and production, the constraints to be reduced must constitute a subset of the
11 These demands are generally met by FCG grammar writers.

FCG and Feature Constraint Logics 9

precondition set of constraints, and the set of main constraints must be disjoint
from the precondition set.

In order to give an exemplification of the above definition of construction in
FCG light, the sets of elementary constraints that build up the “cita” construction
— which was given in FCG format in Figure 1 — are presented in Figure 3.
Further on, Figure 4 shows these sets of constraints represented as rooted FSs
in OSF/LIGHT format.12

In many cases, it is possible to actually get rid of constraint reduction, which
is why in the current implementation of FCG light we opted for a “soft” treatment
of reduction. In other words, the set of constraints designated for reduction are
marked at unification and/or subsumption level by using the reserved feature
TO-BE-REDUCED that takes boolean values. The parser and the producer
subsequently analyze these markings. Such treatment in FCG light is absolutely
sufficient for reproducing a quite elaborate example of learning in FCG, such as
the one described in Gerasymova’s MS thesis [18].

Instead of having one construction/form treated in two different ways during
parsing and respectively production (as it is done in FCG), in FCG light we
explicitly associate each construction with two rules that are treated in exactly
the same manner — the subsumption, reduction and unification sequence — in
both parsing and production. The general form of a parsing or production rule
that corresponds to an FCG light construction is

µ : −ψ;α.
where µ is the main set of constraints, ψ is the precondition, and α is a set of
to-be-reduced constrains. Here, µ, ψ and α should be seen as rooted FSs.

If the reduction actions are implemented in soft mode, and α′ is the marked
FS (using the TO-BE-REDUCED feature) that corresponds to α, then the rule
µ : −ψ, α becomes µ, α′ : −ψ.

The latter can be even written as
µ′ : −ψ.

where µ′ is the unification result for µ and α′.
The algorithm responsible for getting these two FCG light rules is presented

in Figure 6. It has three main steps, each step translating/transforming in a
certain way the output of its preceding step. Before we will comment on them,
we show via an example what these steps are supposed to do. When applied
on the “cita” construction given in Figure 1 the ‘initial’ translation step in this
algorithm builds the sets of elementary constraints shown in Figure 3. In the
‘intermediate’ translation step, these sets of constraints are put under the form
of (single-)rooted FSs, as shown in Figure 4. These FSs will be subject to a
number of simple operations in the ‘final’ translation step, and their ultimate
form (for this example) is given in Figure 5.

The idea behind the first part of the ‘initial’ translation step of our FCG-
into-LIGHT algorithm is the following: Consider an arbitrary FCG construct
12 The correspondence between sets of elementary constraints and (multi-rooted) fea-

ture structures should be familiar to the reader acquainted with feature constraints
logics.

10 L. Ciortuz, V. Saveluc

/* cita ; production */
#top-unit
[SEM-SUBUNITS =>> #verb-unit

[REFERENT #event,
MEANING #event:read

[READER #agent],
SEM-CAT top[BASE-TYPE < #event, event >],
STRING <! "cita" !>,
SYN-CAT verb

[GENDER < #agent, #agent-gender >,
CASE < #object, accusative >]],

SYN-SUBUNITS =>> #verb-unit,
ARGS < #top-unit[MEANING #event:read

[READER #agent]] >]

/* cita ; parsing */
#top-unit
[SYN-SUBUNITS =>> #verb-unit

[SYN-CAT verb
[GENDER < #agent, #agent-gender >,

CASE < #object, accusative >],
REFERENT #event,
MEANING #event:read

[READER #agent],
SEM-CAT top[BASE-TYPE < #event, event >]],

SEM-SUBUNITS =>> #verb-unit,
ARGS < #top-unit[FORM =>> #verb-unit[STRING <! "cita" !>]] >]

Fig. 5. The two FCG light rules that are associated to the construction “cita” given
in Figure 1. The ARGS feature designates the right hand side (RHS) of the rule. The
syntax <!!! > is a “sugar-ed” notation for difference lists. Using such a special structure
is a very convenient way to replace the (interpretable) constraint meets used in FCG.

and assume that we want to obtain an OSF/LIGHT rule that corresponds to
the application of this construct in parsing mode. Among all the elementary
constraints in which this construction is decomposed, those which are subject
to (FCG) matching will be placed in the precondition part of the to-be-created
LIGHT rule for parsing. Similarly, the constraints used for (FCG) merging will
be put into the rule’s main part. The (FCG) tag-ed constraints will be placed
firstly into the rule’s reduction part and secondly wherever the tag re-appears.
The remaining part of the ‘initial’ translation step is concerned with building
the two (parsing and production) rules out of the sets of elementary constraints
that have just been built. As formalized above, each rule is of the form RHS :−
LHS.

FCG and Feature Constraint Logics 11

Input: a construction given in FCG format
1. The initial translation step
− by following the guidelines for construction application in FCG,

build the sets of elementary OSF constraints corresponding to
precondition, reduction and main body,

for parsing and respectively production
− then, for parsing do the following:

place the parsing precondition and reduction constraints
into the RHS of the newly to-be-created (parsing) rule

the rest, i.e. the constraints corresponding to the parser’s J actions, and
all stuff in the left/semantic pole,

including the producer’s J constraints
but not its reduction constraints

is placed into the LHS part of the new (parsing) rule
− for production: proceed similarly.

2. The intermediate translation step:
for each rule of the two rules resulted from the ‘initial’ step,
− in the LHS unify the FSs having the same root identifier
− check whether the FSs in the precondition

is a connex tree, i.e. single-rooted FS
− do the same for the LHS part
− do the same for the reduction part if necessary.

3. The final translation step:
for each rule of the two rules resulted from the ‘intermediate’ step,
− put reduction actions unto soft form

i.e. mark constraints for reduction, using the TO-BE-REDUCED feature
− replace the (“interpretable”) feature MEETS with difference lists;

constrain accordingly the variables in the difference lists
− transform features whose names are non-atomic terms
− extract sort (s1:s2) declarations
− use the reserved feature ARGS to designate the rule’s RHS.

Output: the two LIGHT rules obtained above.

Fig. 6. The FCG-into-LIGHT translation algorithm which, starting from a construction
given in FCG format, obtains the two rules to be used in FCG light for parsing and
respectively production. For instance, for the “cita” construction which was given in Fig-
ure 1, the two FCG light rules produced by this algorithm are those shown in Figure 5.
The sets of elementary constraints (represented as FSs) into which that construction
was de-composed (see Step 1 from above), were previously presented in Figure 3. They
were further down translated as FSs, and the result of Step 2 was shown in Figure 4.

12 L. Ciortuz, V. Saveluc

Something important is to be explained here: The application of the J op-
erator in FCG will correspond in FCG light to (checking and enforcing) cer-
tain elementary constraints. These constraints will be expressed using the re-
served features SYN-SUBUNITS for parsing, and respectively SEM-SUBUNITS
for production. For instance, the FCG code (J ?verb-unit ?top-unit) in the
left/semantic pole of the “cita” construction given in Figure 1 will be translated
as the constraint ?top-unit.SEM-SUBUNITS3?verb-unit.13

The ‘intermediate’ step of our algorithm puts sets/conjunctions of constraints
under the form of rooted FSs. FCG light, which is oriented toward efficiency of
unification and subsumption, imposes that these (precondition, reduction and
main) FSs be single-rooted.

The ‘final’ translation step is concerned with a. soften-ing the constrain re-
duction, i.e. marking the constraints which must be reduced; b. replacing “in-
terpretable”, i.e. procedurally defined FCG predicates like MEETS with non-
procedural ones; c. transforming non-atomic feature names, and d. extracting
is-a relationships between sorts (unary predicates in FCG).

We think it is useful to show how we transform constraint features identified
by non-atomic terms (see Step 3 in Figure 6). For instance, the constraint

CASE(#object) accusative

becomes:

CASE <#object, accusative>.

One final remark: The reader will note that in those two FCG light rules in
Figure 5 we purposely omitted the (markings responsible for) constraint reduc-
tion. This is due to the fact that in FCG light the parser/producer itself (and
not the unifier) takes care of constraint reduction. We should also add that in
FCG light constraint reduction is restricted to the scope of form and meaning.

To summarize this section, we say that a grammar in FCG is a set of con-
structions (written in FCG format), each one of which is automatically translated
using the algorithm in Figure 6 into a pair of rules (in OSF/LIGHT format), one
for parsing and the other for production.

3.2 FCG light semantics

The OSF-logic provided the declarative semantics to the LIGHT system. It does
the same for FCG light — if reduction actions are implemented in soft mode
— both at the FS unification and FS subsumption levels and at the deductive
control level over FSs, i.e. parsing and production [28] [30].14

13 In FCG light, where the use of multi-valued feature constraints is limited to the
reserved SYN-/SEM-SUBUNITS features, the parser/producer will fully take care
of them. In this way, the unification/subsumption procedure is exempted from this
(inefficiency causing!) overhead.

14 We mention that unlike LIGHT when used for the HPSG ERG grammar, FCG light
works with the un-typed counterpart of OSF-logic, since FCG does not impose ap-
propriateness constraints on FSs.

FCG and Feature Constraint Logics 13

In FCG light all rules are unary rules, unlike the LIGHT system which supports
both binary and unary rules. However, the argument — or the pre-condition, or
the right hand side (RHS) — of each rule is not necessarily a phrase structure.
Instead, it is the description of a rooted subgraph in the syn-sem graph created
during parsing and production. The same is true about the rule’s left hand
side (LHS). More precisely, one of the restrictions that we impose on FCG light
grammars is the following: all units specified in a construction should constitute
a rooted graph, where edges are defined via the SYN-SUBUNITS and SEM-
SUBUNITS features.

Concerning the procedural semantics, as outlined in Section 3.1, each con-
struction in FCG light is associated with two rules, one for parsing and the
other for production. Unlike LIGHT, for which the application of rules is fully
unification-based, in FCG light the unique argument of a rule is checked for com-
patibility (with a syn-sem graph) by using FS subsumption (match, in the FCG
formulation). The rule’s LHS is treated via FS unification.15

In FCG light, the parsing and production can be partial. For parsing, this
means that we drop off the usual requests that i. all lexical entries should be
defined in the given grammar, and ii. a syntactic tree should be built so as
to span the whole input sentence and to be subsumed by the grammar’s start
symbol. Just as for HPSG, there is usually no designated start symbol in FCG
grammars. The function of such a symbol is taken by the top-unit, to which all
the other units (morphological, lexical, syntactic or semantic) get linked in one
way or another.

Given τ , the syn-sem graph whose root is the top-unit and whose arcs are
given by the features SYN-SUBUNITS and SEM-SUBUNITS, an FCG light rule
of the form µ : −ψ, α is applied as follows:

if subsume(τ ′, ψ), and σ is the corresponding most general substitution,
then

perform the reduction of the constraints ασ and
unify(µσ, τ ′′)

where τ ′ is an arbitrary (single-rooted, maximally connected) subgraph of τ , and
τ ′′ is the subgraph of τσ whose root is identified by the root of τ ′σ.

It should be noted that a rule application has not necessarily a unique out-
come, since τ ′ is not always unique. Here above, the unification operation is seen
as a constraint satisfaction problem in OSF-logic. Such a problem is solved using
for instance the so-called clause normalization procedure. If µσ and τ ′′ are trees,
then the usual FS unification algorithm can be used and the result is unique (up
to variable renaming). Subsumption is also regarded in the classical way.

The following simple algorithm formalizes the way parsing is done in FCG light:
15 For other perspectives on the unification and merge operations in FCG, the reader

may consult [29] and [16].

14 L. Ciortuz, V. Saveluc

Input:
a grammar G, and
τ the (initial) syn-sem graph corresponding to

the FORM of a given input sentence.
Procedure:

as long as parsing rules in G apply successfully on τ ,
build up the corresponding new syn-sem graph(s).

Concerning the parsing output: syn-sem graphs that span the whole input are
(eligible for) the output; the user may impose additional constraints on them.
If there is no graph that satisfies these constraints, then other (partial) graphs
may be considered.

Similarly one can formalize production in FCG light.

4 Grammar learning in FCG light

In FCG, the learning process is reinforcement-based, i.e. each construct receives
a weight which is a real number between 0 and 1, and it is increased whenever
the construction is used in successful parsing/production. If unsuccessful, the
weight is decreased. One of our objectives has been to explore in FCG light a
different paradigm for defining strategies for construction learning (as used, for
instance, in grammar repairing), compared to the paradigm that is currently
used by FCG.

In FCG light, learning is based on searching in a lattice of grammar versions,
i.e. it amounts to searching in a version space which is partially ordered by
means of a generalization/specialization (actually subsumption-based) relation
between grammars, as illustrated in Figure 7 [22]. The version space is meant
to induce a certain discipline while searching for new grammars (and, at lower
level, new rules) during the learning process.16 For a discussion on using lattices
for learning in Embodied Construction Grammars (ECG) and comparison with
FCG, the reader is referred to [6].

Learning in the FCG light system is performed in on-line (i.e. interactive)
mode, via language games played by 2 agents, as in FCG. For a schematic view
on the functional architecture used by FCG light for learning, the reader should
see Figure 8.

In order to be able to go into more detail when explaining the learning
strategy used by FCG light, we give in Figure 9 the pseudo-code of the procedure
16 One could merge the two learning paradigms by associating each rule (of each gram-

mar) in the version space a weight and then updating it, as done in FCG. As a
consequence, this new, composed paradigm would be a generalization of the two
previous ones. One could think of the rule weights in the current implementation of
FCG light as being initially set to 1; removing a rule from a grammar amounts to
setting its weight to 0. As for FCG, in the new, compound paradigm one would have
to keep track of the generalization/specialization relationships between newly cre-
ated rules and the previously existing ones, and similarly between different grammar
versions.

FCG and Feature Constraint Logics 15

grammar 2 grammar n

grammar
start

grammar i

grammar j

grammar 1

generalize

specialize

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

Fig. 7. Illustrating the notion of version space for the process of learning grammars
in in the FCG light system. Upward arrows signify the generalization relation between
grammars. Conversely we have the specialization relation. During the grammar learning
process, the ‘start grammar’ can be generalized for instance to ‘grammar 1’ (which in
turn can be generalized to ‘grammar j’), or can be specialized to ‘grammar 2’ or
‘grammar n’.

lcc

abctest suitefcg

abc

lcc

learner teacher

language game

Fig. 8. Schematic view on the learning architecture in FCG light. Here lcc (a name
which is an abbreviation for: LIGHT into C Compiler) designates the module in the
LIGHT system that is in charge with the pre-processing and compilation of the input
grammar; abc is the parser’s name (abbreviation for: Active, Bottom-up Chart-based),
while fcg is the learner module of FCG light. The dotted arrow corresponds to questions
that the learner may ask the teacher in order to guide his or her search for better
inferred rules/grammars.

16 L. Ciortuz, V. Saveluc

Target grammar: ;
the given given in Chapter 3 of Gerasymova’s MS thesis [18];

Input/start grammar: ;
obtained from the target grammar by deleting for instance the lexical construction
for “po-” and the associated ‘mapping rule’ and ‘semantic’ rule.

Language game: ;
1. choose a setup, for inst. Misha read for-a-while; Masha read ongoing;

teacher: generate a question, for instance “kto pocital?”
learner:

parse the question,
get the corresponding meaning,
try to disambiguate it wrt the given setup,
if disambiguation is successful, then go to Step 1,
otherwise (since in this case ‘po-’ is unknown to him/her),
send to the teacher the failure message;

teacher: reveal the correct answer to the above question (“Misha”);
learner:

after correlating the CFS previously obtained by parsing
with the meaning pointed to by the teacher’s answer,
induce a holophrasis construction (corresponding to ‘pocita’);

2. after performing a number of times the Step 1,
use the procedure given in Figure 10 to
generalize over the learned holophrases, and then
extract new construction rules
by decomposing the generalized holophrasis.

Fig. 9. The pseudo-code for the language game strategy which was designed for learning
for Russian verb aspects as presented inGerasymova’s MS thesis [18], Chapter 4. The
teacher agent uses the ‘target’ grammar, while the learner agent starts the game with
an altered version of it, called the ‘start’ grammar.

that implements in FCG lightthe language game presented by Gerasymova in
Chapter 4 of her MS thesis [18]. This language game strategy supports the
learning of an FCG grammar for the Russian verb aspects. During the language
game played by the two agents, a number of holophrasis constructions are learned
(see Step 1 in Figure 9). The generalization procedure which is called (see Step 2
in Figure 9) to elaborate new rules based on the previously produced holophrases
is given also in pseudo-code in Figure 10.

Gerasymova’s target grammar , which was translated in FCG light following
the guidelines that have been presented in Section 3, is able to parse and pro-
duce sentences like “Misha pocital”, “Masha narisoval lico”, “kto pocital?”.17 In
the beginning of the language game, from the target grammar — which is used
17 These sentences translate into English as “Michael read for a while”, “Masha has

drown the face”, and “Who read for a while?” respectively.

FCG and Feature Constraint Logics 17

Input: a set of holophrases produced (or, even the CFSs from which they originated)
during the application of Step 1 of a series of language games played according to the
strategy presented in Figure 9;
Output: a set of pair of constructions (each one made of a lexical entry and a lexical
rule) corresponding to each prefix and its associated event-type;
Procedure: • Group (the CFSs that correspond to) all holophrases that have

− the same prefix (for example ‘po-’),
− the same value for the EVENT-TYPE feature for the event which is associ-

ated to the respective verb’s occurrence (for example, ‘pocita’, ‘porisova’ etc.
correspond to the event-type ‘for-a-while’);

• for each such group g
generalize: apply the least upper bound (LUB) operation on the CFSs (representing
the holophrases) in the group g; let’s denote it LUB(g);

decompose: split the generalized holophrasis construction corresponding to LUB(g)
into a lexical construction and a lexical rule;

to get this done, it is necessary to introduce a new (‘AKTIONSART’) feature; this
feature makes the link between the prefix and the verb’s EVENT-TYPE value. For
example:

SYN-CAT top[AKTIONSART delimitative];
SEM-CAT top[AKTIONSART(#event) delimitative];

replace g in the current grammar with the above created rules.

Fig. 10. The procedure for generalizing over (CFSs corresponding to) the holophrases
learned during a series of language games for acquiring the Russian verb aspects.

as such by the ‘teacher’ agent —, the syntactic construction ‘po-’, and the as-
sociated ‘mapping’ rule and ‘semantic’ rule were eliminated in order to get the
start grammar, which is to be used (in the beginning of the language game) and
later on improved by the ‘learner’ agent. Skimming through the execution of the
procedures given in Figures 9 and 10 during this language game allows us to
make a couple of remarks:18

First, concerning Step 1 in the procedure given in Figure 9:
In FCG light a holophrasis (like ‘pocita’) is obtained by generalizing the CFSs

obtained during parsing. More specifically, this holophrasis construction is ob-
tained by:
– applying the LUB operation on the syn-sem CFSs that have been obtained

after parsing slightly similar parsed sentences like “Misha pocital” and “Masha
pocitala”; the LUB operation generalizes them with respect to the subject
(Misha, Masha, kto) and the endings (-l/-la) indicating the perfect tense;19

18 The reader may find useful to follow the explanations below by taking also a look
at the whole picture of the learning process, as shown in Figure 13.

19 [18] does not explicitly call this a generalization. Nor does it explicitly names the
LUB operation.

18 L. Ciortuz, V. Saveluc

– then inducing a rule construction from the generalized (via LUB) CFSs ob-
tained above, this is a construction which when starting from the FORM
(‘pocita’) gets the associated MEANING (read for-a-while) and vice-versa.

Here above it became evident an advantage that FCG light has over the FCG
approach, due to the fact that we use a feature constraint logics as support: the
LUB operation is a well known operation defined on feature structures with a
well defined correspondent in feature logics.

Second, concerning Step 2 in the language game strategy outlined in Figure 9:
Here we do not stick (strictly) to the 3-step learning scheme used by Gerasymova,
inspired by [35], so to produce a syntactic rule, a mapping rule and a semantic
rule. We use instead a two-step strategy for building a lexical entry and a lexical
rule. This is common practice for the HPSGs that have been implemented in
the LIGHT system. We mention that the lexical construction and the lexical
rule produced in the decompose step in Figure 10 correspond respectively to the
syntactic rule and (a slightly simplified version of) the composition result of the
mapping rule and the semantic rule in [18].20

The generalization procedure given in Figure 10 is a significantly revised
version of the one in [18]. Concerning its application in the afore mentioned
language game, the reader should note that due to the one-step rule decompo-
sition (producing a ‘syntactic’ construction and a ‘combined’ rule), it is enough
to use the AKTIONSART feature at the verb’s SYN-CAT level. Further rule
splitting/decomposition of the ‘combined’ rule is possible, and so a ‘mapping’
rule and a ‘semantic’ rule can be obtained (à la Tomasello).

After the work performed by the generalization procedure in Figure 10, a
specialization task can be performed on constructions for prefixed verbs, as pre-
sented in Gerasymova’s MS thesis [18].21 This task, which consists of two steps,
namely A and B in Figure 11, can be performed by alternative means compared
to those used in [18]. We claim that in FCG light these means are simpler, more
diverse and more naturally fitted into the framework.

Indeed, in OSF-logics it is easy to consider/introduce new sorts by gener-
alizing/grouping some already existing sorts. This is for instance the case of
‘non-ongoing’ when learning Russian verb aspects, as implemented at Step B in
Figure 11 and illustrated in Figure 12. Also, instead of introducing new features
— like ASPECT, at Step A in Figure 11 —, one could opt for redefining the sort
hierarchy. In our example, we mean introducing the sort ‘perfective-verb’ as a
subsort to the sort ‘verb’.
20 We are not interested here in maintaining the relationship between what we automat-

ically learn in FCG light and the learning schemata discussed in Tomasello’s work,
as it was done in Gerasymova’s thesis for the following reason: while being useful
for didactic presentation purposes, we consider it a rather too difficult and complex
endeavor to be conveniently followed (as such) by autonomous learning robots.

21 Alternatively, this specialization can be applied before generalization. In such a case
it would work on syn-sem CFSs directly, not on the rules created afterwards based
on these CFSs.

FCG and Feature Constraint Logics 19

A. By simply analyzing the association of (prefix, event-type) pairs associated to verbs
during the language game, it can be inferred that:

not all verbs can get prefixed (with ‘po’-like prepositions), therefore:
• to distinguish between those verbs that accept prefixes and those that don’t,

introduce a new sort, ‘perfective’, and
• add (it as the value of) a new feature, ‘ASPECT’ at the verb’s SYN-CAT level:

SYN-CAT top[ASPECT perfective];

B. By simply analyzing the values of the EVENT-TYPE feature for events correspond-
ing to the verbs whose ASPECT is ‘perfective’ it follows that:

only events whose EVENT-TYPE value is different from ‘ongoing’ are associated (as
meaning) to those verbs, therefore:

• invent a new sort, name it for instance ‘non-ongoing’, and
• add (it as the value of) a new feature, ‘VIEW’ at the verb’s SEM-CAT level, for

all perfective verbs, i.e. those that can be prefixed:
SEM-CAT top[VIEW(#event) non-ongoing].

Fig. 11. The procedure for specializing over verbs while learning in FCG light the
Russian verb aspects. Like in the generalization procedure, our approach is slightly
different from the one presented in [18]. A couple of remarks could be added here,
namely 1. for step A: the complementary sort to ‘perfective’ would be ‘non-perfective’,
and 2. for step B: in the FCG light’s sort hierarchy, the ‘non-ongoing’ sort will be the
parent sort for all values taken by the EVENT-TYPE feature which are different from
‘ongoing’, as graphically illustrated in Figure 12.

After having presented the procedures that support the learning process (Fig-
ures 9-11), we add the remark that they make explicit a heuristics responsible
for guiding the learning agent — based on background linguistics knowledge —
to rightly choose a (certain) construction among the (possibly many) different
ones which are situated in the lattice of rule versions between the most specific
and the most general constructions that are compatible with the sentences to be
learned in the current language game.

For Gerasymova’s example, we could be formulate as follows the simple lin-
guistic reason that supports the learning of the construction for the ‘po-’ lexical
entry and the corresponding lexical rule via generalization on the ‘pocital’-like
holophrases (see Step 2 in Figure 9):

Because ‘po-’ is a prefix morpheme inside the word ‘pocital’, the gram-
mar learning process should concentrate on elaborating the relationship
between the newly learned holophrasis and the already existing construc-
tions or CFSs for the other two morphemes that compose that word,
namely the verb root (‘cita’) and the ending (‘-l’/‘-la’).

20 L. Ciortuz, V. Saveluc

ongoing

non−ongoing

event−type

.

event−type

. ongoing.

Fig. 12. Example of sort signature refinement in FCG light. Such a refinement can be
commanded during the specialization procedure, see Figure 11.

It turns out that this specific relationship can be identified by a heuristics
that generalizes twice on the CFSs corresponding to learned holophrases, namely:
firstly generalizing on the ending ‘-l’/‘-la’ (by simply using the LUB operation,
see Step 1 in Figure 9), and secondly generalizing on the verb (followed by
application of the rule decomposition procedure, see Figure 11). The “invention”
of holophrasis constructions — starting from CFSs relating morphemes/words
unknown to the learner to the meaning that the teacher points to — followed by
rule creation is the essence of the grammar learning process during this language
game. A synthesis of learning in FCG light the aspect of Russian verbs is shown
in Figure 13.

Finally we should note that different language games in FCG and FCG light
require different language strategies. Therefore learning in such a setup is not
general-purpose. Defining and implementing a set of useful, wider-range learning
strategies should be the focus of further research.

5 Conclusion and further work

This chapter introduces FCG light, a core subset of FCG, which is (re)defined
using as framework a feature constraint logic, namely OSF-logic. The latter
provides FCG light with a well-defined semantics and allows its clear compari-
son with other unification-based formalisms. We showed how FCG light can be
implemented by using a simplified version of LIGHT — a platform on which
HPSG grammars have previously been implemented. For further details on the
actual implementation, the reader is referred to [27]. In order to proof-check the
functionality of our FCG light’s implementation we reproduced the experiment
for learning the FCG grammar of Russian verb’s aspects [18]. Instead of using
reinforcement-based learning as done in the current implementation of FCG,
we opted for learning in a lattice/hierarchy of different grammar versions. This
lattice is naturally provided by the OSF-logic setup by exploiting the specializa-
tion/generalization relationship among grammars. Building on this experiment,
in our recent paper [13] we have shown how to model in FCG a Slavic-based
phenomenon present in a regional dialect of the Romanian language (more ex-
actly, a certain verbal aspect), and how to model in FCG the transformation

FCG and Feature Constraint Logics 21

FORMMEANING

generalized

holophrasis

po+verb

holophrasis

po+verb1

holophrasis

po+verb2

holophrasis
po+verb1+end1

holophrasis
po+verb1+end1

generalized

holophrases

po+verb

. . .

. . .

na+verb

rule

map.
rule

sem.

VIEW,

ASPECT

syn.

rule

complem.
rule

AKTIONSART

decomposition

rule

generalization
+

rule

decomposition

specialization

Fig. 13. An overview on grammar repairing, i.e. rule learning in FCG light, as done dur-
ing the language game for acquiring the Russian verb aspects. For the rule composition
scheme (acting on syntactic, mapping and semantic rules) please refer to [19].

that presumably takes place in a child’s brain when “learning over” that Slavic
construction a Latin-rooted phrasal construction in modern Romanian.

Apart from our experiment and that of Gerasymova’s, both using FCG for
learning phenomena related to Slavic languages, there is already another one
done for Polish [20].

We intend to apply such, and other, learning strategies to learn the clitic
pronouns in the Romanian language, which is a rather difficult issue for non-
native speakers. The result of the Romanian clitics’ formation in FCG light could
then be compared, for instance, to the HPSG description of these clitics as done
in the Paola Monachesi’s PhD thesis [23].

Also, inspired by the FCG approach to grammar learning, we are now able to
suggest new ways for learning grammars in other unification-based formalisms.
In particular, we aim to test these ideas on ilpLIGHT [8]. This is an exten-
sion/configuration of the LIGHT system which adapted the learning paradigm of

22 L. Ciortuz, V. Saveluc

generation
hipothesis

evaluation

hipothesis

abc

user:
affect
input
grammar

not suitable

ilp

.

output 2 output noutput 1

while

abc abc abc

grammar 1 grammar 2 grammar n

test suite
golden

start
grammar

grammar
target

Fig. 14. The learning architecture of the ilpLIGHT extension/configuration of the
LIGHT system. The abc and ilp modules are the parser and respectively the ILP-
based learner components of LIGHT.

Inductive Logic Programming (ILP, [24]) so as to work with HPSG-like unifica-
tion grammars.

In ilpLIGHT, the learning process — also based on searching in a lattice of
grammar versions, as in FCG light — is done in off-line/batch mode, by using
a “golden” test suite given to the learner by the supervisor/teacher.22 For the
learning architecture of ilpLIGHT, the reader is referred to Figure 14. [11] has
demonstrated that it is possible to induce each of three basic HPSG principles —
the head principle, the subcategorization principle and the saturation principle,
as presented by [25] — given that the grammar contains the other two principles
and a simply annotated test suite is provided.

We suggest that ilpLIGHT can be substantially improved by using certain
ideas borrowed from FCG:

– instead of using a given “golden” test suite (on which parsing is performed
and against which the progress of grammar learning is checked), this test

22 The test suite is a set of sentences with associated parsing trees and eventually other
informations.

FCG and Feature Constraint Logics 23

suite can be dynamically produced during the language game played by two
agents;

– the grammar learning process can be “grounded”, something which, up to
our knowledge, was not considered before for HPSGs;

– new rules can be learned by generalizing upon several already learned rules,
instead of simply modifying one or at most two rules, as is currently done in
ilpLIGHT, thus constituting a significant step forward.

Upgrading the ilpLIGHT system so to do parsing and production with SBCG
grammars [26] would further enhance the possibilities to compare FCG with
other construction-based systems.

Acknowledgements: This work has been done in the framework of the
European FP7 research project “ALEAR” and its sister project “ALEAR 37EU”
funded by the Romanian Ministry of Education and Research”. The authors wish
to thank Joachim De Beule and Kateryna Gerasymova for their useful comments
on an earlier draft of this chapter.

Bibliography

[1] Aït-Kaci, H., Podelski, A., Goldstein, S.: Order-sorted feature theory unifi-
cation. Journal of Logic, Language and Information 30, 99–124 (1997)

[2] Aït-Kaci, H., Di Cosmo, R.: Compiling order-sorted feature term unifica-
tion. Tech. rep., Digital Paris Research Laboratory (1993), pRL Technical
Note 7

[3] Aït-Kaci, H., Podelski, A.: Towards a meaning of LIFE. Journal of Logic
Programming 16, 195–234 (1993)

[4] Bleys, J., Stadler, K., De Beule, J.: Search in linguistic processing. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[5] Carpenter, B.: The Logic of Typed Feature Structures – with applications to
unification grammars, logic programs and constraint resolution. Cambridge
University Press (1992)

[6] Chang, N., De Beule, J., Micelli, V.: Computational construction grammar:
Comparing ECG and FCG. In: Steels, L. (ed.) Computational Issues in
Fluid Construction Grammar. Springer Verlag, Berlin (2012)

[7] Ciortuz, L.: Expanding feature-based constraint grammars: Experience on
a large-scale HPSG grammar for English. In: Proceedings of the IJCAI 2001
co-located Workshop on Modelling and solving problems with constraints.
Seattle, USA (2001)

[8] Ciortuz, L.: A framework for inductive learning of typed-unification gram-
mars. In: Adriaans, P., Fernau, H., van Zaanen, M. (eds.) Grammatical
Inference: Algorithms and Applications, LNAI, vol. 2484, pp. 299–301.
Springer-Verlag, Berlin, Germany (2002)

[9] Ciortuz, L.: LIGHT — A constraint language and compiler system for typed-
unification grammars. In: KI-2002: Advances in Artificial Intelligence. vol.
2479, pp. 3–17. Springer-Verlag, Berlin, Germany (2002)

24 L. Ciortuz, V. Saveluc

[10] Ciortuz, L.: LIGHT AM – Another abstract machine for feature structure
unification. In: Oepen, S., Flickinger, D., Tsujii, J., Uszkoreit, H. (eds.)
Efficiency in Unification-ased Processing, pp. 167–194. CSLI Publications,
The Center for the Study of Language and Information, Stanford University
(2002)

[11] Ciortuz, L.: Inductive learning of attribute path values in typed-unification
grammars. Scientific Annals of the “Al.I. Cuza” University of Iasi, Romania,
Computer Science Series pp. 105–125 (2003)

[12] Ciortuz, L.: Parsing with Unification-Based Grammars — The LIGHT Com-
piler. EditDan Press, Iasi, Romania (2004)

[13] Ciortuz, L., Saveluc, V.: Learning to unlearn in lattices of concepts: A case
study in Fluid Construction Grammars. In: Proceedings of SYNASC 2011.
pp. 160–167. IEEE Computer Society, Timişoara, Romania (2011)

[14] De Beule, J.: A formal deconstruction of Fluid Construction Grammar.
In: Steels, L. (ed.) Computational Issues in Fluid Construction Grammar.
Springer Verlag, Berlin (2012)

[15] De Beule, J., Steels, L.: Hierarchy in Fluid Construction Grammar. In:
Furbach, U. (ed.) Proceedings of KI-2005. pp. 1–15. No. 3698 in Lecture
Notes in Artificial Intelligence, Springer-Verlag, Berlin (2005)

[16] Fernando, C.: Fluid Construction Grammar in the Brain. In: Steels, L. (ed.)
Computational Issues in Fluid Construction Grammar. Springer Verlag,
Berlin (2012)

[17] Flickinger, D., Copestake, A., Sag, I.A.: HPSG analysis of English. In:
Wahlster, W. (ed.) Verbmobil: Foundations of Speech-to-Speech Transla-
tion, pp. 254–263. Artificial Intelligence, Springer-Verlag (2000)

[18] Gerasymova, K.: Acquisition of aspectual grammar in artificial systems
through language games (2009), Humboldt Universitaet zu Berlin, Germany,
MS thesis

[19] Gerasymova, K.: Expressing grammatical meaning with morphology: A case
study for Russian aspect. In: Steels, L. (ed.) Computational Issues in Fluid
Construction Grammar. Springer Verlag, Berlin (2012)

[20] Höfer, S.: Complex declension systems and morphology in Fluid Construc-
tion Grammar: A case study of Polish. In: Steels, L. (ed.) Computational
Issues in Fluid Construction Grammar. Springer Verlag, Berlin (2012)

[21] Kifer, M., Lausen, G., Wu, J.: A logical foundation of object-oriented and
frame-based languages. Journal of the ACM 42(4), 741–843 (1995)

[22] Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
[23] Monachesi, P.: A grammar of Italian clitics. Ph.D. thesis, Tilburg University

(1995), iTK Dissertation Series 1995-3 and TILDIL Dissertation Series 1995-
3

[24] Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and
methods. Journal of Logic Programming 19,20, 629–679 (1994)

[25] Pollard, C., Sag, I.A.: Head-driven Phrase Structure Grammar. CSLI Pub-
lications, Stanford (1994)

[26] Sag, I.A.: Sign-Based Construction Grammar: An informal synopsis. In:
Boas, H., Sag, I.A. (eds.) Sign-Based Construction Grammar. CSLI Publi-

FCG and Feature Constraint Logics 25

cations, The Center for the Study of Language and Information, Stanford
University (2010), version of August 23, 2010

[27] Saveluc, V., Ciortuz, L.: FCGlight, a system for studying the evolution of
natural language. In: Proceedings of SYNASC 2010. pp. 188–193. IEEE
Computer Society, Timişoara, Romania (2010)

[28] Shieber, S.M., Schabes, Y., Pereira, F.: Principles and implementation of
deductive parsing. Jornal of Logic Programming pp. 3–36 (1995)

[29] Sierra, J.: A logic programming approach to parsing and production in Fluid
Construction Grammar. In: Steels, L. (ed.) Computational Issues in Fluid
Construction Grammar. Springer Verlag, Berlin (2012)

[30] Sikkel, K.: Parsing Schemata. Springer Verlag (1997)
[31] Smolka, G.: Feature-constraint logics for unification grammars. Journal of

Logic Programming 12, 51–87 (1992)
[32] Steels, L.: A first encounter with Fluid Construction Grammar. In: Steels,

L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[33] Steels, L., de Beule, J.: A (very) brief introduction to Fluid Construction
Grammar. In: ScaNaLU ’06: Proceedings of the Third Workshop on Scal-
able Natural Language Understanding. pp. 73–80. Association for Compu-
tational Linguistics, Morristown, NJ, USA (2006)

[34] Steels, L., De Beule, J.: Unify and merge in fluid construction grammar. In:
Vogt, P., Sugita, Y., Tuci, E., Nehaniv, C.L. (eds.) EELC. Lecture Notes in
Computer Science, vol. 4211, pp. 197–223. Springer (2006)

[35] Tomasello, M.: Construction grammar for kids (2007), Constructions, [On-
line]

