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A Formal Deconstruction of Fluid Construction
Grammar

Joachim De Beule

Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Belgium

Abstract. Fluid construction grammar was primarily developed for sup-
porting the on-line processing and learning of grammatical language in
robotic language game setups, and with a focus on semantics and con-
structrion grammar. In contrast, many related formalisms were devel-
oped to support the formulation of static, primarily syntactic theories
of natural language. As a result, many of FCG’s features are absent in
other formalisms, or take a somewhat different form. This can be con-
fusing and give FCG a ‘peculiar’ status from the perspective of those
more familiar with other formalisms. This chapter aims to clarify some
of these peculiarities by providing a formal deconstruction of FCG based
on a reconstruction of it’s history.

1 Introduction

Fca was primarily developed for supporting the on-line processing and learning
of grammatical language in robotic language game setups.! In contrast, many
related formalisms were developed to support the formulation of static theories
of natural language. As a result, many of FCG’s features are absent in other
formalisms, or take a somewhat different form. This can be confusing and give
FCG a ‘peculiar’ status from the perspective of those more familiar with other
formalisms. This chapter aims to clarify some of these peculiarities.

In the hope that this will help to accomplish this goal, our strategy will be
to reconstruct (most of) FCG in a bottom up fashion. We start from the fact
that the history and development of FCG are part of a longer tradition to make
use of robotic and computational setups for investigating the emergence and
evolution of language. As the complexity of these setups grew, the need arose to
handle ever more complex aspects of language. Many of FCG’s peculiarities today
represent concrete solutions to specific problems encountered in this process. The
strategy taken in this paper is therefore to give a deconstruction of FCG based
on a reconstruction of its history.

It would also be possible to achieve clarification in another way, by providing
a detailed account of the formal differences that exist between FCG and related
formalisms. Although this is not the main approach taken here, some high level
differences are touched upon in the next section. This will at least provide some

! In a language game setup, robotic agents interact in order to establish a communi-
cation system or artificial language [17].
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dimensions along which such a comparison could take place, and helps to set the
stage for the rest of the paper.

2 General Considerations

One of the most distinguishing and, perhaps, confusing aspects of FCG is that it
lacks any notion of well formedness, at least not in the sense as is customary in
other approaches. For instance, in most unification or constraint based formal-
izations of language, one is typically interested in the minimal consistent set of
constraints that specifies, say, all of English (see e.g. [15].) In contrast, in FCG,
the validity of a constraint or construction is not measured by its consistency or
by how it restricts the set of well formed sentences. Rather, it is measured by
how it enables communication. This calls for a functional approach to language
rather than a declarative one.

The notion of “unification” in FCG is also somewhat peculiar. In general,
unification is about finding conditions under which certain things can be done,
that is, are “valid” or “well formed”. Particularly, in other approaches, the set
of well formed structured equals the the set of structures entailed by a given
grammar through the process of unification. A particular sentence, in this view,
specifies a number of specific constraints — the particular word forms in the
sentence and their order. These carve out a subset of the set of all well formed
sentences. As mentioned, determining this subset is what processing in most
unification based approaches is about. In FCG, unification is used for somewhat
different purposes, and therefore in different ways.

According to Construction Grammar (CxG), linguistic knowledge is orga-
nized in constructions. These are entrenched routines that are generally used in
a speech community and that involve a pairing of meaning components to form
elements [6]. In FCG, constructions are more specifically routines for express-
ing a meaning and for understanding a form. Like functions, FCG constructions
transform meaning specifications to form specifications during production, and
vice versa during parsing. In this view, a particular sentence specifies a number
of ‘seeds’ rather than constraints. Each ‘seed’ (e.g. a word or specific syntactic
category) triggers constructions which in turn add more ‘seeds’ (e.g. the meaning
or semantic category of the word). This is the reason why, in FCG, there are two
sorts of “unification” one for determining the set of “valid” constructions (those
that are triggered), and one that governs the actual application of activated
constructions (“merge”).

Another important distinction in FCG is the notion of processing direction.
In the tradition of generative grammar, the two processing modes normally dis-
tinguished are parsing and generation. Parsing refers to bottom-up process by
which a particular sentence is analyzed in terms of production rules. Genera-
tion refers to the top-down process of determining all possible sentences that
can be generated with the production rules. The two processing modes in FCG,
normally called parsing and production, have nothing to do with all this. In FCG,
parsing refers to the process of determining the meaning of a given sentence,
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and production refers to the process of determining a form by which a mean-
ing can be expressed. The duality between FCG’s processing modes is thus of a
different nature than the one typically conceived of in the generative tradition.
Some of FCG’s peculiarities, like the fact that feature structures have two poles
(a semantic and a syntactic pole), directly derive from this difference.

Finally, since FCG was developed for supporting artificial language processing,
it makes the least possible amount of claims about the structure or nature of
language.? Almost everything in FCG was introduced because it was required for
solving a problem of language processing. For instance, certain generalizations
require that it is possible to distinguish between specific word forms and the word
classes they can belong to (e.g. their part of speech). Fca provides ways to make
such kinds of distinctions, but it does not specify what particular distinctions
should be made. There are no type hierarchies —at least none that can not be
easilly circumvented or changed or extended; no intrinsic restrictions on the
number or sort of features in feature structures; no restrictions on the values of
features, etc.

In the following, we trace back the origins of these and other features of FCG
by incrementally building up the machinery required to process an increasingly
complex set of language phenomena. Throughout the paper, it will be useful
to keep in mind a robotic agent that faces the task of parsing or producing
an utterance. Producing an utterance amounts to transforming a given mean-
ing specification into a form specification. Parsing amounts to transforming a
given form specification into a meaning specification. This bi-directional prob-
lem structure is formalized throughout the chapter with the help of production
and parsing functions, denoted as g_, and g. respectively. The precise form of
these functions, as well as of the meaning and form specifications upon which
they operate, will gradually be changed and their complexity increased, mim-
icking the evolution of FCG itself. In the next section, we start by specifying the
most basic elements of meaning and form specifications, called components, in
more detail.

3 Meaning and Form Specifications

In general, with language processing we mean the transforming of meaning speci-
fications into form specifications and vice versa. By definition, such specifications
are built from primitive meaning and form components respectively. As is cus-
tomary in FCG, such components will be represented as expressions in prefix-list
notation. Furthermore, names of frames and frame relations will be used in com-
ponents as specified in the on-line FrameNet database [2, 8]. For example, the
following meaning component specifies the ‘[1ine]’ frame:

(frame x [line]).

2 Although recent advances, e.g. so calles “design patterns”, can be seen as such.
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The symbol ‘x’ is a skolem constant: it represents a specific instance of the
[1ine] frame. I will sometimes further refer to skolem constants in meaning
components as meaning constants.

By definition, meaning specifications are collections of meaning components.
For example, the meaning of the phrase “natural line” is

{(frame x [line]), (frame y [naturall),
(fe-relation y [entity] x)}.

The second component in this set introduces ‘y’ as an instance of the ‘ [natural]’
frame. The third component specifies that the ‘[entity]’ frame element of this
frame is the frame ‘x’.

Similarly, form specifications are collections of form components. The form
of the phrase “natural line” for example is represented as below.

{(lexeme a "line"), (lexeme b "natural"), (meets a b)}.

The skolem constants ‘a’ and ‘b’ are form constants.

In the next section, we start investigating the processing of language in the
case of the simplest meaning and form specifications possible: those consisting
of a single meaning and form component only.

4 Holistic Language Processing

We first restrict the discussion to “holistic languages”. In a holistic language,
phrases are always ‘atomic’: they are not structured or made out of smaller
components in any meaningful way. Formally, this corresponds to the case that
meaning and form specifications specify exactly a single component each. In
other words, we only consider singleton specifications in this section.

4.1 Constructions

The bi-directional processing of singleton meaning and form specifications calls
for a bi-directional lookup table. Each entry in the table associates a meaning
component with a form component, and in this sense is a construction. The
following is an example construction that associates the meaning specification
‘{(frame x [line])}’ with the form specification ‘{(lexeme a "line")}’.

c1(z,a) = ’ {(frame x [line])} +> {(lexeme a "line")}) ‘ (1)

This construction is not in full concordance with contemporary practices in FCG
however, and we will change its form again later. Nevertheless, the convention of
displaying constructions in a box will be maintained throughout the chapter. The
meaning side is separated from the form side by a double arrow. The meaning
and form sides of a construction ‘¢’ will also be referred to as ‘™’ and ‘¢,
respectively. For example, with ¢; as above:

' (x) = {(frame x [line]l)} ; ¢f(a)={(lexeme a "line")}.
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The semantic part of a construction will generally be referred to as the construc-
tion’s semantic pole. Likewise, the syntactic part is referred to as the construc-
tion’s syntactic pole.

4.2 Variables and Bindings

When faced with the problem of expressing the meaning specification ‘{ (frame x
[1inel)}’, an agent can retrieve the construction ¢ (x) from its lookup table and
notice that it specifies the exact same meaning specification in its semantic pole.
It can therefore conclude that this meaning is expressed by the construction’s
syntactic pole.

But when given instead, say, the specification ‘{(frame y [line])}’, a prob-
lem arises. The problem is that the construction specifies the skolem constant ‘x’,
whereas the new specification specifies the constant ‘y’. In consequence, there
will be no match during lookup. A proper construction, therefore, should specify
a variable instead of a constant, so that it matches all instances of the ‘[line]’
frame.

By convention, variables will be marked by a leading question mark, as in
‘?x’. Variables are implicitly and universally quantified over, so the introduction
of variables is like the inverse of skolemization. A variable can take any (but only
one) value. A specific assignment [?z/z] of a variable 7z to a value x is called
a binding or a basic substitution. A set of bindings B of variables 7x1, 725, ... to
values 21, xa, ... is represented as B = [?x1/x1, Tx2/22/, ...]. Every set of bindings
B induces a substitution function op(e), which replaces all variables that occur
in an expression e by their value according to the bindings in B.

Replacing the skolem constants ‘x’ and ‘a’ in construction ¢; by variables
and using the abbreviations

mq(?x) = (frame ?7x [linel) and f1(Ya) = (lexeme ?7a "line"),

thus gives the following more general definition of construction c;:

a1 (72, %a) = | {m(72)} © {fi(a)}| (2)

This construction associates any [line| frame with any “line” lexeme.

4.3 Component Matching

We now put everything together. Suppose that C'is a constructicon —a collection
of constructions, that is, a bi-directional lookup table between singleton meaning
specifications and singleton form specifications— and suppose that some speci-
fication {m(z)} needs to be expressed. For that, the agent goes through the
constructions in C' and compares their semantic poles to the given specification.
The meaning and form components in constructions now contain variables. The
operation with which components containing variables can be compared is called
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component matching. We denote it by Uy. This function takes a pattern compo-
nent p and a source component s and computes all sets of minimal substitutions
op that make the pattern identical to the source, that is, for which op(p) = s.3
An example of component matching is given below.

Uo(ma(?x), my(x)) = {[?x/=]}.

We are now ready to give a first definition for the production and parsing func-
tions. The production function g_, for now operates on a singleton meaning
specification {m(z)} and computes the set of form specifications that express it
according to the constructicon C:

g (m(x),C) = {c/ 1 c € C,Up(c™(?x), m(z)) # 0}.

Thus, this set contains the syntactic poles of all constructions of which the
semantic side matches the given meaning component m(z). For example, with
c1 as defined earlier:

g ({(frame y [1linel)},{c1}) = {{(lexeme ?a "line")}}.

The parsing function g, is defined in a similar way. It takes a singleton form
specification and computes a set of singleton form specifications:

ge({f(a)h C) = {cm rceC, UO(Cf(?a)v f(b)) # (Z)} .
For example:
g ({(lexeme b "line")}, {c1}) = {{(frame 7x [linel)}}.

It is possible that several constructions are available in a given constructicon that
all express the same meaning (synonyms) or cover the same form (homonyms).
In this case, the agent will have to select one among them. This could be done
for instance on the basis of preference scores. We return to this issue in section
7.

This concludes our discussion of the processing of holistic language. In sum-
mary, it requires a bi-directional lookup table of constructions — associations
between singleton meaning and form specifications containing variables —, and
a component matching function for determining which constructions express a
given singleton meaning specification or parse a given singleton form specifica-
tion.

5 Compositionality

We now relax the assumptions that meaning and form specification may only
contain a single component. This opens up the way to compositional language,
in which phrases are structured and consist of several parts.

3 A minimal substitution is one that does not specify bindings for variables that do
not occur in the pattern or source. Component matching corresponds to the notion
of standard unification in Artificial Intelligence and logic (See e.g. [13].)
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5.1 Set Matching

Suppose again that C' is a constructicon (a collection of constructions). As be-
fore, it is assumed that meaning and form constants are replaced with variables
in constructions. Suppose further that the meaning specification that needs to
be expressed is denoted by p. As before, p will have to be compared to the se-
mantic poles of constructions in C. This time, however, it is possible that some
construction only expresses part of u. This is the case for those constructions of
which the meaning pole is a subset of u. The operation that checks whether one
set of components is a subset of another is called set matching. It is denoted as
U;. This function takes a pattern set p and a source set s and computes the set
of minimal substitutions op that make the pattern set a subset of the source,
that is, for which op(p) C s. More formally, if 4 and p’ are two meaning or form
specifications, then:

Ur(s 1) = {B : o) C o'} (3)

New versions of the production and parsing functions that use this enhanced
matching power can now be defined as follows:

g_>(,u,C’) = {Cf rce Ul(Cm,,u,) # Q)}v

g (0,C)={c":ce C, Uy (¢, ¢) # 0}.

These functions now operate on arbitrary meaning and form specifications in-
stead of just singletons. For example, if p;(x) = {m1(z)} and ¢1(a) = {f1(a)},
then:

U({ma(?2)}, pa (@) = {[?2/2]} 5 Ui({f1(Pa)}, ¢1(a)) = {[?a/al}
and, with C' = {¢1(?z,7a)} (see equation 2),
9 (m1(2), C) ={6(?a)} ;5 g (¢1(a),C) = {1 (?2)}
Now consider the following meaning specification:
p(z,y) = {mi(z),ma(y)} = {(frame x [linel), (frame y [naturall)}.
It must be transformed into the following form specification:
&(?a,7b) = {f1(?a), f2(7b)} = {(lexeme 7a "line") (lexeme ?b "natural").

This is achieved with the following construction h.

b= {m1 (%), ma(7y)} © {fi(%a), £2()} |

Indeed, the semantic side of h matches u:

U (h™ (2, ), w(@,y)) = { [P/, Ty /y]}-
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From this, and from the definition of ¢g_,, it follows that

9, {h}) = {¢(7a,70))}

In a sense this is a “holistic” production because the construction A maps both
meaning components to two form components in one go. In contrast, a composi-
tional encoding should involve two constructions: one for the ‘line’ part and one
for the ‘natural’ part. Let us call these constructions ¢; and ¢o. Then ¢; is as in
equation (2) and ¢y is as below.

ca(?y, %) = | {ma(?y)} & {/2(20)} ]

= ’ {(frame 7y [naturall)} <> {(lexeme 7b "natural")} ‘ (4)

The semantic sides of both constructions match the given specification u(z,y),
so that the “lookup” part of processing succeeds for both of them:

Ur(el* (P, 2a), w(z, y) = {[?z/x]} 5 Ui(cs*(?y,70), w(z, y)) = {[?y/y]}.

However, the production function g_, as defined above produces two incomplete
productions instead of a single compositional production.

(,0) = {{el 1A}

Compositional language processing is thus more demanding than holistic lan-
guage processing, beyond the fact that it requires a more general mode of unifica-
tion (set matching). It also requires a transient linguistic structure for collecting
intermediate results (partial meaning and form specifications).

5.2 The Transient Linguistic Structure and Merge

We introduce the transient linguistic structure for keeping track of intermediate
processing results. Since this is needed in the case of compositional encoding
regardless of the direction of processing (parsing or production), and since this
will turn out to be useful in the following, we define the transient linguistic
structure to be an association between a meaning and a form specification. As
in the case of constructions, the semantic and syntactic poles of a transient
structure s are denoted as s and s/ respectively.

The initial meaning and form specifications from which processing starts
and that are given as input to the production and parsing functions can also
conveniently be specified as transient linguistic structures by simply leaving the
appropriate pole empty, that is, the syntactic pole in case of production and the
semantic polle in case of parsing. Thus, the meaning specification p which is
given before production starts, corresponds to the transient structure s, below.
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Now the semantic poles of the constructions ¢; and ¢y match the semantic
pole of the transient structure s,:

Ur(cl",sp) = Un(cl" (Tx), plz, y)) = {[7/]}

and

Ui(cg', sp') = Ur(eg'(7y), ulz, ) = {[7y/y]}
As before, this indicates that both constructions can be considered for further
processing by the production function. The idea is that each of the constructions
adds its own parts to the transient structure. This is done through merging.

In this section, we do not consider any other relationships between meaning
or form components besides the fact that they appear together in meaning and
form specifications. In this case, all that needs to happen during merging is that
the missing constructional form components are added to the transient structure.
In other words, for now we can define the merge operation to be the set theoretic
union operation. More formally, we introduce the merge function Us(¢,¢') for
merging two component sets ¢ and ¢’ into a single component set as:

Uz(¢,¢') = U ¢

Clearly, the merge function applies both to meaning and form specifications,
since these are all sets.

The notion of merge in FCG should not be confused with Chomsky’s merge
introduced in [4]. Rather, merging corresponds to unification in traditional uni-
fication and constraint based formalisms: both result in extra ‘constraints’ in
the transient linguistic structure. As mentioned in the introduction, in FCG such
‘constraints’ can also be considered ‘seed material’. This will become relevant
when even more complex meaning and form specifications are considered below.

We are now in a position to redefine the production and parsing functions
again such that they operate on transient linguistic structures and make use of
the merge function Us,. Since these functions now should embody an iterative
process of applying all applicable constructions one after the other, this is most
easily done through induction. Thus, in case that the constructicon only specifies
a single construction ¢, and with s a transient linguistic structure, we have that:

g (s, {c}) = {{ s™ o Us(s, s7) [V if Uy(e™, s™) # 0 )

{s} otherwise.

In words, this says that the production function, when given a transient linguistic
structure s and a singleton constructicon {c} such that the semantic poles s™
and ¢™ match (according to U;), produces a transient linguistic structure with
a modified syntactic pole that is equal to the union of the syntactic poles of the
given transient structure and the construction. This definition is easily extended
to larger collections of construction through the following induction step on
larger constructicons:

9-(5,{c}UC) ={g(s,C) : s € g (s, {c})} .
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Note that this definition assumes that the order in which constructions are
considered does not matter. If it did, then the constructions would not be inde-
pendent and a search would be required over possible orderings. This possibility
is further discussed in section 7.

Note also that, whereas the processing functions are defined by induction,
this does not mean that they are also recursive functions. In recent years, there
has been quite a debate over whether or not humans are the only species that
possess the capacity for recursion, so this issue is a matter of some importance
[7, 9, 11, 12|. However, there is an important difference between genuinely re-
cursive functions and merely tail recursive representations of iterative functions
[1]. Only genuinely recursive functions also require a recursive implementation
for computation. Compositional language processing as defined in this section
does not.

In any case, we now have that:

9= (s fer)) = {[n o (ACa} |}
9 (s fea}) = {1 o {Ra(0)} ]}

And:

rtonfenea) = (e o]

This accomplishes a compositional encoding of p into ¢. The parsing function is
defined in a similar fashion.

This concludes our discussion of bi-directional processing in the case that
meaning and form specifications are sets of ‘independent’ meaning or form com-
ponents. The fact that the components are ‘independent’ means for instance
that they are not allowed to share any of their skolem constants. In summary,
in this case a set unification function U; is required for matching sets of compo-
nents and for testing which constructions apply. This corresponds to the ‘lookup’
step in processing. Furthermore, actually applying matching constructions in a
compositional fashion amounts to adding their constructional components to a
transient linguistic structure through a merge operation. The transient linguistic
structure functions to keep ‘intermediate results’ (partial productions or parses)
during processing.

6 Constituent Structure and Hierarchy

So far, we have been considering the English example phrase “natural line” with-
out bothering about the fact that the two lexemes in it are ordered. Indeed,
consider again the form specification ¢(?a, 7b) from the previous section, which
is the result of applying the production function to the meaning u(z,y):

d(?a,?b) = {f1(?a), f2(?b)} = {(Llexeme 7a "line"), (lexeme 7b "natural")}
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Something is missing in this specification. In fact, it fails to specify the order of
lexemes, so that both “natural line” and “line natural” are consistent with it. As
mentioned already in section 3, a more correct specification should specify this
order, like 1 below.

Y= {fl(?a)’ f2(?b)a f3(7bv 7&)}

= {(lexeme 7a "line"), (lexeme ?b "natural), (meets 7b 7a)}.

Here, the component f5(?b,7a) or ‘(meets 7b 7a)’ represents a further con-
straint on the variables 7a and ?7b besides the fact that they stand for the lex-
emes ‘line’ and ‘natural’. This component specifies that these lexemes should
be rendered in a particular order. Only the phrase “natural line” is consistent
with this specification, whereas the alternative “line natural” is ruled out.
Similarly, nothing in the meaning specification u(x,y) = {m1(z), m2(y)}
specifies that it is actually the line (represented by x) that has the property of
being natural or, in FrameNet terminology, that fulfills the ‘[entity]’ Frame
Element relation of the ‘[natural]’ frame. The phrase “natural line” therefore
expresses not u(x,y), but the more elaborate meaning specification 1 below.

n = {m1(x), ma(y), ms(z,y)}
= {(frame x [line]), (frame y [naturall), (6)
(fe-relation y x [entityl)}.

As on the form side in 1), components are no longer independent in 7: some of
the skolem constants are shared between them. In the remainder of this section
we investigate what modifications need to be made to the machinery developed
so far so that it becomes possible to deal with such dependencies.

We start by recalling that, in English, the order of words in the example
phrase “natural line” is licensed by a modifier-head construction for combining
adjectives with nouns. On the meaning side, this construction links the corre-
sponding meaning components by specifying an [entity] frame element rela-
tion. How could such a construction be defined with the representational tools
developed so far? The answer, unfortunately, is that it can not.

To see this, consider that it should apply to the transient structure obtained
from applying the lexical constructions ¢; and cs to the extended meaning spec-
ification n. Since

Ur(el"(?z, 7a),n(z,y)) = {[?z/x]} and Ui(cy'(?y, ?0),n(z,y)) = {[?y/y]},

this transient structure looks as follows:

{ml (‘T>7 mg(y)7 m;;(x, y)}
9»(7% {61302}) = <
{f1(%a), f2(70)}

The correspondence that exists between the meaning component ‘m;’ and the
form component ‘f1’ (as it is captured in construction ¢;) is not reflected in the
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above transient linguistic structure. Similarly, nothing in the structure shown
above indicates that there is a connection between the meaning component mo
and the form component f;. However, the modifier head construction needs
access to this information.

Once again we will extend our representational toolkit. PArticularly, we will
make the poles of constructions and of the transient linguistic structure to be
feature structures instead of plain sets. In other words, constructions (and the
transient structure) now become coupled feature structures (or c¢fs’s in short).

6.1 Coupled Feature Structures

In general, a feature structure is a set of named wunits. Each unit represents a
lexical or phrasal constituent. In order to find the form components that are
associated with the meaning components in a unit, it suffices to look in the cor-
responding unit (the unit with the same name) on the syntactic side. Units are
further organized into features. The MEANING feature holds the unit’s meaning
specification. The FORM feature holds its form specification. Furthermore, like
constituents, one unit may be part of another one. This is encoded in the SUB-
UNITS feature. Meaning and form constants are kept in the REFERENT feature.
This can be summarized as follows using BNF notation:

cfs ::= sem-unit-structure <--> syn-unit-structure
unit-structure ::= {regular-unit*}

regular-unit ::= <unit-name,{regular-featurexl}>
regular-feature ::= <feature-name,feature-value>

feature-value ::= feature-value-element

| {feature-value-element*}.

The asterisk represents the Kleene star operation, specifying that one or more
elements of the type marked with it are possible. So ‘regular-unit*’ stands for
zero or more regular units. The notation (.) denotes an ordered list of elements,
i.e. a sequence. Sets, which are unordered lists of elements, are denoted with
curly brackets as usual.

Here is an example. The cfs that holds the meaning specification 1 and noth-
ing else appears as follows:

sy =| {{uo, (maNING, )} & {}] (7)

This cfs has one unit named ug (not to be confused with the component uni-
fication function Up). In turn, this unit has the specification 1 as value for its
MEANING feature.

By using feature structures instead of plain sets for representing the poles
of constructions and of the transient structure, it becomes possible to capture
hierarchical constituent structure relations in them. For instance, as will be ex-
plained shortly, the transient linguistic structure after applying the constructions
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c1 and ¢ to the coupled feature structure s, above will look as below:

S12 = §— (Sm {01, 02})

(ug, (SUBUNITS, {ui,us}), (ug, (SUBUNITS, {u1,us}),
(MEANING, {m3(z,)}), (FORM, { f3(7b,?a)}), (8)
_| ) (w1, (MEANING, {my(2)}), o (u1, (FORM,{fi1(?a)}),
(REFERENT, x)) , (REFERENT, 7a)) ,
<u27 <MEANING7 {mQ (y)}> ) <U2, <FORM7 {f2(?b)}> )
(REFERENT, y/)) (REFERENT, 7b))

Among other things, this cfs captures precisely the fact that the components m,
and f1 ‘belong together’ since they are part of the same unit u; (although they
are in different poles). Importantly, the constituent structure in this cfs is a result
of applying the constructions ¢; and ¢y to the initial linguistic structure s,, (which
itself only has a flat constituent structure). So it is indeed the construction ¢;
that defines the meaning-form pair m;(?x) + f1(?a) as a constituent, but now
this is also reflected in the transient linguistic structure.

In FCG, the correspondence between constructions and constituents is not
merely one-to-one. In particular, FCG expects that constructions explicitly specify
the way in which they change the constituent structure of the transient linguistic
structure (i.e. add new units and/or move components around etc.) Thus, the
modifier head construction we aim to define will have to specify that a new unit
can be created that groups an existing adjective unit with an existing noun unit
in a specific order. In the next section, it is explained how such manipulations
of the transient structure can be specified in constructions through the usage of
TAGs and ‘J-units’.

6.2 Tags and J-units

Following the developments in the previous section, we now define constructions
as an extension over coupled feature structures as follows:

cxn ::= sem-pole <--> syn-pole
pole ::= {unit*}
unit ::= regular-unit | J-unit |

<unit-name, {[regular-feature | tagl*1}>
tag ::= (TAG [tag-variable regular-feature]*)
J-unit 1:= <(J . 7focus ?parent {?childx*}),

{[tag-variable | regular-feature]*}>

All coupled feature structures are thus constructions, but not the other way
around: constructions, in addition, may contain TAGs and J-units. J-units are
easily recognized by the fact that they do not have a proper name. Instead
their name is a list of the form ‘(J . ?focus-unit ?parent-unit child*)’. The first
element in this list is called the ‘J-operator’. The dot after the J-operator in
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the definitions above indicates that the arguments that follow the operator are
optional.

J-units are ignored during the matching or ‘lookup’ process. The workings
of the J-operator during merging is most easily explained with an example.
Consider therefore again the lexical construction ¢; that couples the meaning
component m, to the form component f;. In our new notation it looks as follows:

{ (7u, (TAG ?m  (MEANING, {m1(?z)}))) }

((J ?new ?u), {7m,(REFERENT, 7z)})
Cc1 = x4 (9)

{(‘?m (tac 7 (FORM, {f1(?a)}))) }

((J ?new ?u), {?m, (REFERENT, ?a)})

This construction specifies one J-unit in both poles. The focus of the J-units is
the variable ‘ 7new’. Their parent is the variable ‘ 7u’, which also is the name of a
regular unit in the construction. The fact that the focus variable does not refer to
a regular unit indicates that a new subunit is introduced by this construction in
the transient linguistic structure during merge. This unit will be made a subunit
of the parent unit. On the semantic side, the new unit will have a REFERENT
feature with value (the binding value of) ?z. It will also have a MEANING fea-
ture with value {m;(?z)}, as specified by the TAG variable ?m. On the syntactic
side, it will have a REFERENT feature with value 7a and a FORM feature with
value {f1(7a). The latter is specified by the TAG variable ?f. By definition, when
meaning and form components are tagged and specified in J-units as described,
they will be removed from the unit in which they originally occurred. This ex-
plains why, in structure (8) above, which is the result of applying constructions
c¢1 and ¢s to the initial structure (7), the meaning and form components covered
by these two constructions only occur in the newly created units u; and uy. The
process is explained in more detail in the following.

6.3 Unit structure matching and merging

We now specify the process explained in the previous section in more detail. We
first consider the matching or comparing of unit structures for lookup.

Recall the definition of coupled feature structures in BNF notation. In partic-
ular, notice that a unit structure is a set of units. It follows that unit structures
can be matched with the set matching function Uy, provided that the matching
of the set elements, which are units now, is properly defined. Two units match
when their names match and when their sets of features match. The latter is a
case of set matching again, and calls for a proper definition of feature matching.
It is clear that, continuing in this way and following the BNF definition of coupled
feature structure, matching of unit structures can fully be defined in terms of
symbol matching (for the names of units and regular features) and the set and
component matching functions U; and Uy.

It remains to specify how J-units and TAGs affect the matching process. As
mentioned, J-units are simply ignored during matching. Their purpose is to spec-
ify how a construction modifies constituent structure, given that the (appropriate
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pole of) the construction matches with the (appropriate pole of) the transient
linguistic structure.

We now turn to tags. On the one hand, the purpose of tags is to mark parts
of the transient structure for later reference. Thus, when the semantic pole of
construction c; is matched against the initial unit structure s, the tag variable
?m receives the binding (MEANING, {m1(z)}). On the other hand, their purpose
is to allow to move components between units during merge. So we turn to the
merging of unit structure. Ignoring the details having to do with the bookkeeping
of names of units and features etc., merging regular parts of unit structures boils
down to taking their union. J-units additionally change constituent structure and
extract tagged components. For simplicity, we continue to use the symbol ‘U’
for the extended merge operation that accomplishes all this. Below is given the
result of merging the semantic pole of construction ¢; with the initial structure
Gl

Uy (0, s7) = { Euo, (MEANING, {ma2(y), ms(z,y)})) } (10)
u1, (MEANING, {m1(z)})})
The resulting structure has two units instead of just one (with the new unit
arbitrarily named u). As explained, this is due to the J-operator in ¢J*. The
tagged part of meaning m;(x) was extracted from the original unit and moved
to the new unit.

We can now define new production and parsing functions that work with
coupled feature structures. The main difference with the previous versions is that
now merging should occur for both poles, regardless of the processing mode. The
reason for this is that both constructional poles may contain J-units, implying
that both sides of the transient linguistic structure may change. Thus we have:

Ug(tm, Cm) 4 Ug(tf, Cf) if Ul(Cm,tm) 75 0
t otherwise.

(e 4e) =

and
g-(t,CU{c}) = g5 (g9-(t {c}),C).

A new parse function is readily defined in a similar way. Note that, as before,
these definitions assume that the order in which constructions are applied is
arbitrary. This is not a valid assumption in general, and the consequences of
relaxing this assumption are investigated in section 7. Note also that, since it
is now possible that constructions specify changes to the transient linguistic
structure on the side that was previously only matched, we have entered the
domain of context sensitive language processing.

6.4 Grammatical Constructions

We now finish the discussion on constituent structure and hierarchy by working
towards a modifier-head construction for processing the phrase “natural line”.
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Consider again construction c;:

{ (7u, (TAG ?m  (MEANING, {m1(?z)}))) }

((J ?new ?u), {7m, (REFERENT, 7z)})
c1 = d (11)
{ (Tu, (tac 7f (FORM, {f1(?a)}))) }

((J ?new ?u), {?m, (REFERENT, ?a)})

Its semantic side matches that of the initial cfs s, repeated below.

5y = [ {{uo, (MEANING, {ma (@), ma() ma(z.p)))} © 0] (12)

Indeed:

Uir(el"s sy') = [Tu/uo, Tz /x, 7m/ (MEANING, {my(z)})]. (13)
The focus variable ¢ 7new’ of the J-unit in the construction ¢; does not receive a
binding according to the above expression. As explained, merging this construc-
tion into the structure s,, therefore results in an additional unit u;:

(ug, (SUBUNITS, {u1}),
(MEANING, {m2(y), m3(z,y)}) ,
(u1, (MEANING,{m;(z)}),

(REFERENT, 1))
“
{ug, (SUBUNITS, {1 })),
)

<u17 <FORM, {fl(?a)}>

(REFERENT, 7a})

51 =g (s, {c1}) =

The additional unit contains the tagged part of meaning that was previously in
the top unit ug. Now consider cy below.

{ (Tu, (TAG ?m (MEANING, {m2(?y)}))) }
((J 7new ?u), {?m, (REFERENT,?y)})
Cy = g (15>
{(?u, (TAG 7f (FORM, {f2(?b)}))) }
((J ?new ?u), {7m, (REFERENT,?b)})

We have that

Ui(cqt, s1) = {[?u/ug, y/y, ?m/ (MEANING, {m2(y) })]},

and
Us(cy,sT) = sty Uslch,s]) =sl,,
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with s1o as before:

S12 = §— (Sm {617 02})

(uo, (SUBUNITS, {uy, uz}), (uo, (SUBUNITS, {uy, uz}),
(MEANING, {ms(z,)}) (FORM, { f3(?b,7a)}) , 16)
_ | ) (w1, (MEANING, {mi(2)}), o (uy, (FORM,{f1(?a)}),
(REFERENT, 1)) , (REFERENT, 7a)) ,
<u2’ <MEANING7 {m2 (y)}> ) <u25 <FORM7 {fQ(?b)}> )
(REFERENT, y)) (REFERENT, 7b))

This cfs explicitly couples the meanings mq (z) and mo(y) to the forms f;(?a) and
f2(7?b) respectively, and this way provides the necessary information required to
express the remaining component ms(x, y). We are finally in a position to specify
the modifier head construction cz that expresses this component:

(?ug, (SUBUNITS, {?u1, Tus}),
(TAG 7m (MEANING, {m3(?z,?y)})),

(T, (REFERENT, 72)) ,
(?ug, (REFERENT, 7y)) ,
((3 us 7ul), 0),
(3 2w),  {mm))
C3 = A d
(?uo, (SUBUNITS, {?u1, 2us}) ,
(TAG 7f (FORM, {f3(7D,7a)})),

( (REFERENT, 7a)) ,
(Pug, (REFERENT, 7b)) ,
(
(

This construction further transforms structure sio to structure sio3:

5123 = 9—»(8177 {61, C2, 03})

(up, (SUBUNITS, {u1}))
(u1, (SUBUNITS, {us})
(MEANING, {m1(?z), ms(?z, 7y)})
(REFERENT, 7))
(MEANING, {m2(?y)})
(REFERENT, 7y/))
(ug, (SUBUNITS, {u1}))
(u1, (SUBUNITS, {us})
<FORM7 {fl (?a’)7 f3(?b7 ?a)}>
(REFERENT, 7a))
(

FORM, {f2(?D)})
)

(REFERENT, ?7b)

<u27

<~

<U23
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The construction cz enforces a head-complement relation between its head and
complement units ?u; and ?us respectively. This is accomplished by the first
J-units on both sides, which make unit 7us a subunit of ?u;. The second J-units
moves the covered meaning and form components m3 and f3 to the head unit.
Thus, together, constructions ¢y, co and c3 successfully parse and produce the
form specification v into the meaning specification 7. In other words, we have
finally accomplished the parsing and production of the English phrase “natural
line”.

Note that the usefulness of the REFERENT feature now becomes apparent as
well: without it, it would not have been possible to formulate a modifier-head
construction cs, unless through a reference to the particular meaning components
that are being combined. In our case these are m; and ms, but a different
modifier-head construction would be needed for a different pair of components.
This would undermine the whole purpose of the modifier-head construction,
which is to separate the expression of a linking relation between components
from the expression of the components themselves.

This almost concludes our discussion of constituent structure and hierarchy.
For completeness, we mention that the processing of natural language in general
requires many more refinements to the machinery introduced so far. Consider for
instance that our modifier-head construction cs for pairing an adjective an a noun
actually does not refer to the notions of “adjective” or “noun”. In French, and
in many other languages, there are even different types of adjectives and nouns.
For instance, in the phrase “le grand ballon rouge”, both “grand” and “rouge” are
adjectives (“big” and “red” in English respectively), but they combine differently
with the noun “ballon”. These distinctions are clearly important for language
and language processing, and it should be possible to deal with them in FCG.
Luckily, the bulk of the machinery required for this is already in place, and no
further extensions need to be introduced besides new types of unit features and
new types of operators.

In FCG, semantic and syntactic types and categories are usually specified in
the SEM-CAT and SYN-CAT features. Next to the MEANING, FORM and REFERENT
features, these are the most commonly used features in FCG, although the set of
possible features is open ended. Testing for the semantic or syntactic category
of a constituent is easily performed during matching by including the type de-
scription in the corresponding regular unit in a construction. Most grammatical
languages also involve more refined sorts of restrictions on semantic and syntac-
tic categories. Consider for example the sentence (a) below, which is an instance
of the Caused Motion construction.

(a) “Joe broke the vase onto the floor.”

Golberg notes that the Caused Motion construction only applies if the cause is
not an instrument [10], rendering sentence (b) below ungrammatical.

(b) **The hammer broke the vase onto the floor”

As is discussed at length elsewhere, such and other types of restrictions can be
specified with special operators.
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7 Constructional Dependencies and Search

So far we have ignored any intricacies that might arise from dependencies be-
tween constructions. Such dependencies may interfere with processing. To see
this, consider once more the example phrase “natural line”. It does not matter
in what order the lexical constructions ¢; and co for “natural” and “line” are
applied, the resulting structure will be the same. But the modifier-head con-
struction only applies after them. In other words, there is a dependency between
these constructions. It is also possible that two constructions are conflicting, for
instance synonyms which both cover the same (set of) form components. In this
case there will be several possible parses or productions. Finally if, as in the
context of language game experiments, constructions are marked with conven-
tionality or preference scores, then some analysis will be more preferable than
others. All of these things imply that processing involves search.

7.1 General aspects of processing as search

In general, search involves the exploration of a search space of possible analysis
(parses or productions) with the goal to find a suitable one. The search space
is not directly accessible however: it needs to be constructed through the actual
application of constructions, starting from the initial linguistic structure. All
constructions that apply to the initial structure give rise to a new (partial)
analysis or state in the search space. At each moment during processing, it
therefore needs to be decided which analysis to consider further and, if it triggers
several constructions, which construction to actually apply to it. This process
of repeatedly selecting a previously obtained transient linguistic structure and
selecting and applying a construction to it in order to get a modified transient
structure is what search is all about. Different search strategies, like breadth
first or depth first, merely correspond to different selection strategies, that is, to
different strategies for exploring the search space.

In FCG, we are not primarily interested in all possible analysis (i.e. the set
of all well formed feature structures compatible with the input initial struc-
ture). Rather, processing is goal-driven, and the primary aim is to find a suitable
analysis as fast as possible. What is a suitable analysis depends on the task at
hand. During production, one will typically want that all meaning components
are expressed, or that the produced phrase is unambiguous. If there are several
alternatives, e.g. synonyms, then the most conventional one is preferred etc. Dur-
ing parsing, all form components should be processed, and the parsed meaning
specification should ‘make sense’, e.g. unambiguously determine a referent in the
discourse context.

It is often the case that several analysis (parses or productions) are possi-
ble that all meet these primary criteria. For instance, an idiom might express
a meaning more concisely than a regular analysis. This situation is somewhat
similar to the one that arises when both a holistic and a compositional analysis
are possible (see sections 4 and 5). Selecting among such alternative analysis
requires additional criteria. In human language, such criteria are often related
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to frequency and alignment effects: words and constructions that are more com-
mon or were used in the nearby past are typically preferred over others. In the
following section it is discussed in more detail how the availability of frequency
or related constructional scores can be used to guide search such that more
desirable analysis are found first before others.

7.2 Optimal Processing

The problem investigated in this section is how to select among a set of available
partial analysis for further expansion during processing. To be precise, an anal-
ysis consists of an ordered set of constructions that, when applied one after the
other to the initial linguistic structure (the input to processing), leads to a mod-
ified transient linguistic structure. Obviously, if one of the modified structures
meets a given set of primary processing criteria (see section 7.1), then processing
stops (a ‘solution’ is found). If not, however, one of the available analysis and a
construction that applies to it are selected. Applying the construction then gives
rise to a new, additional analysis, and the process is repeated.

If constructions are marked with a “preference score”, for instance reflecting
the frequency of usage, then a global score can be calculated for each analysis
by combining the scores of the constructions in it. One possibility is to sum all
constructional preference scores. However, this introduces a bias towards analy-
sis with many constructions, that is, towards compositional rather than holistic
or idiomatic analysis. An alternative is to average over all constructional pref-
erence scores. Neither of these approaches take into account that some analysis
might be less complete than others (e.g. leave more meaning or form components
unanalyzed). As such, an analysis that covers only a small part of all compo-
nents with highly scored constructions will be preferred over one that covers all
components, but with only moderately scored constructions.

The question arises whether there is an objective or otherwise ‘optimal” way
of combining constructional scores. The answer in general depends on the precise
nature of these scores. If they reflect the probability that the construction will
“get the message through”, that is, is shared between the interlocutors, then
one possibility is to optimize the expected communicative success. This makes
sense particularly in the context of language evolution experiments, where the
aim is precisely to simulate the evolution of an efficient communication system or
language between robots, and scores typically reflect a degree of “conventionality”
or “sharedness”.*

So let a(sg,c) denote the fraction of components in the initial structure sg
that is covered by a construction c. For example, if n = {my(x), ma2(y), ms(z,y)}
and cq1, cs and c3 are as before, then each of the constructions covers one third of
the components in 7. The holistic construction h of section 5.1 covers two thirds.
Furthermore, let 5(c) denote the (positive) preference score of the construction ¢,

4 Note however that not just any scoring mechanism allows an interpretation in terms
of probabilities. For one thing, probabilities must be positive and are subject to
normalization constraints etc.
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and let A be a (partial) analysis (an ordered set of constructions). An optimistic
(or admissible) yet informative heuristic score of the analysis A is the best still
achievable score y(A) defined as follows:

Y(A) = also, )B(e) + (1= Y also,c)

ceEA ceA

The first term in the above expression is the contribution of the constructions in
A, that is, in the set of constructions that already applied, modulated by their
proper preference scores. The second part is an optimistic estimate of what can
still be achieved for the remaining components not yet covered in the analysis.
This term assumes that it will be possible to cover the remaining components
with constructions of maximum preference score 1. Considering constructions
in order of preference and adjusting the still achievable score accordingly may
considerably improve the accuracy of the heuristic, and hence the time and
memory required for processing.’

In summary, given that a constructional score can be interpreted as the
probability that the construction is shared, optimal processing optimizes the
expected communicative success. This is particularly relevant within the context
of language game experiments, where the goal is to optimize communicative
success amongst a population of (simulated) language users, but might also be
relevant in relation to frequency effects observed in human language.

7.3 Efficiency Issues and Specialized Techniques

Many other specialized techniques exist for optimizing symbolic language pro-
cessing. However, many of them rely on assumptions that do not hold in FCG.
For instance, a well known optimization technique is chart parsing. In computer
science terms, this is a memoization technique, which ensures that the same sub-
phrase is never analyzed more than once. Instead, the result is calculated once
and ‘memoized’, so that it can be retrieved again later if needed. Most chart
parsing techniques rely on pre-defined and often linear representations of form.
Fca adopts a more flexible representation of form that may involve a tree, or
even a graph of form components. Nevertheless, some degree of memoization can
still be achieved by checking for similarities between different analysis. This can
still greatly reduce processing load, particularly during lexical processing where
the order in which constructions are applied often does not matter.

Another optimization technique is the usage of ranks or independent con-
struction sets. For some constructions it is known that they will not apply unless
certain other constructions applied (consider again the modifier-head construc-
tion for instance), so it makes sense to put them in different constructicons.
Considering that increasing the size of the constructicon can quickly lead to

5 This is not a trivial matter however, since in general it cannot be excluded that a
highly scored construction is only triggered at a later stage, for instance because it
depends on other constructions.
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a combinatorial explosion of the search space, such a ‘divide and conquer’ ap-
proach might considerably reduce processing load. More generally, we can keep a
detailed record of all dependencies that exist between constructions and compile
them into a constructional dependency network. This might eliminate search al-
together. However, if the language changes, constructional dependencies change
too, so that a ‘one time compilation’ approach is not possible and more dy-
namic programming techniques are required. These issues are further discussed
elsewhere, e.g. [18] or [5].

8 Discussion and Conclusion

FcaG was developed as a computational framework to support artificial language
processing in robotic setups. From this perspective, it is actually surprising that
it has grown into a formalism in which even complex phenomena of natural
language can be captured. This in itself, in my opinion, makes it worthwhile to
compare FCG with other formalisms that were developed for capturing natural
language from the start.

Thus FcG, like HPSG [14] or ECG [3], is feature structure and unification
based. However, despite these similarities, a detailed comparison is not easily
made due to fact that these techniques are sometimes employed for different
reasons. As such, whereas unification in HPSG is seen as a falsifiability problem
that determines the set of well formed structures, in FCG it is sometimes used
as a way to perform a “lookup” of constructions during processing (match), and
sometimes, in a different form, as an active step in processing itself (merge).
This reflects the fact that the development of FCG was driven primarily by the
problem of language processing rather than that of language representation.

Another distinguishing feature of FCG is that linguistic knowledge is orga-
nized into constructions. As in construction grammar, these are meaning form
pairings. In FCaG, constructions are furthermore routines for (partially) trans-
forming meaning specifications into form specifications during production, and
vice versa during parsing. There is thus an inherent duality between two pro-
cessing modes —parsing and production— that is not usually found in other for-
malisms. This duality should not be confused with the one that exists between
parsing and generation in generative approaches.

With this chapter, we aimed to clarify some of these and other ‘peculiarities’
by tracing them back in the history of FCG. This history more or less follows
the development of processing machinery for processing increasingly complex
forms of language. For purely holistic language processing, a simple bi-directional
lookup table between meaning and form specifications suffices. Matching then
amounts to a simple comparison of patterns (component matching) and merg-
ing is not even relevant. For compositional language processing of independent
components, a slightly more involved form of matching is required, namely set-
matching. Merging then amounts to taking the union of sets. It also becomes
necessary to introduce the notion of a transient linguistic structure for captur-
ing intermediate processing results. When components are no longer independent
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but form a network, additionally relations between meaning and form compo-
nents as captured in constructions need to be represented in the transient lin-
guistic structure as well. This is the reason for introducing feature structures
in FCG. Matching now becomes a kind of pattern-matching between feature
structures. Merging now formally corresponds to the notion of unification of fea-
ture structures in other unification-based language formalisms, augmented with
special machinery for specifying manipulations to the constituent structure of
the transient linguistic structure. Chapters [16] and [5] can be consulted for a
further entanglement of differences and commonalities between FCG and other
approaches to unification and constraint based language processing.
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