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Abstract. I propose how symbols in the brain could be implemented
as spatiotemporal patterns of spikes. A neuron implements a re-write
rule; firing when it observes a particular symbol and writing a particular
symbol back to the neuronal circuit. Then I show how an input/output
function mapped by a neuron can be copied. This permits a population
of neuron-based rules to evolve in the brain. We are still very far from
understanding how FCG could be implemented in the brain; however,
understanding how a basic physical symbol system could be instantiated
is a foundation for further work.

1 Introduction

Fluid Construction Grammar is a formalism for defining and operationaliz-
ing the highly complex symbolic operations that occur in language processing
[11, 53, 55, 57]. The implementations of FCG made so far are all carried out
through symbolic programming languages, mostly in LISP but also in PROLOG
(as discussed in other chapters of this volume [54]). How can the brain do Fluid
Construction Grammar (FCG)? Constructions are rules that act on structured
symbolic representations. To implement FCG the brain would need to implement
a physical symbol system (PSS) [21]. Therefore my aim is to discuss the validity
or otherwise of a PSS and how it can be implemented. So far I have not been
able to propose any plausible neuronal mechanisms capable of the more com-
plex matching and merging operations required by FCG. However, I am able to
hypothesize neuronal implementations of symbolic re-write rules [16], to show
at an algorithmic level how these rules could be evolved in the brain to develop
syntactic conventions [15], and to then show at an implementation level how
such rules could replicate in neuronal tissue.

My approach rests on two novelties. The first is the recent formulation of
polychronous computing [31, 34|, i.e. computing on the basis of spike patterns.
This suggests a neural substrate for symbol structures [16]. The second is the
neural replicator hypothesis proposed by Eoérs Szathmary and myself that sug-
gests that rules operating on such symbols could be units of evolution in the
brain [43]. We hypothesise that constructions of FCG replicate in the brain and
evolve using a kind of neurally implemented learning classifier system [15].

Historically, purely symbolic architectures whilst in principle endlessly ex-
pressive, in practice have been hard to train, e.g. SOAR [24]. The FCG is no
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exception. Why is this? I suggest that it is because a grounding of FCG in
lower level perceptual mechanisms is needed. This would allow local synaptic
learning rules to become available to the symbolic learning system. For example,
it is conceivable that a symbolic system would be able to exapt (re-use for a
different function) visual and auditory shift-invariant pattern recognition mech-
anisms for the matching operation of FCG [37, 58]. Alternatively, it is possible
that hierarchical predictive model building mechanisms originally formulated in
visual perception could be re-used to construct conceptual categories [49], or
that mechanisms for causal learning could be used to learn causal dependencies
between symbol tokens, e.g syntactic regularities [44]. So far, such links have
been poorly explored. To some extent this is because of a sociological divide
between the symbolic and the connectionist factions in cognitive science [21, 23].
To help to bridge this divide it is useful to consider how chemical information is
symbolic in a sense, and to realize that symbolic computation takes place in the
biochemical systems of cells.

2 A Chemical Symbol System

Chemical machines, or in other words fluid automata [22] are constructed from
interacting chemicals. Chemistry can be usefully thought of as containing a kind
of physical symbol system. These chemical machines are very far from serial
Turing machines at the implementation level, although they may well be Turing
complete at the computational level [39]. An archetypical example of such a
chemical machine is a cell.

What are molecules? They are objects composed of atoms that have specific
structural relationships between them. A molecule is assembled according to a
combinatorial syntax, i.e. a set of chemical structural constraints such as valance,
charge, etc... that determine how atoms can legally join together to make the
molecule. Combinatorial semantics determine how a molecule with a particular
structure will react or behave in a given environment. So, semantic content in
the case of the chemical symbol structure equates to chemical function, or in
other words reactivity. The function of a molecule is itself a function of the
semantic content of its parts, e.g. the reactivity of a benzene ring is modified by
side-groups such as methyl groups. The physical symbols and their structural
properties cause the system behaviour.

Note that a chemical system, whilst consisting of molecules that are sym-
bol structures, operates in parallel (rather than in series). It is constrained by
kinetic and other dynamic aspects. It is subject to non-encoded (implicit) influ-
ences such as temperature. All these aspects were not aspects which naturally
came into the picture when thinking about physical symbol systems, but they do
enter when considering chemical symbol systems. For good example of a symbol-
ically specified computation in chemistry is a chemical clock. The two coupled
autocatalytic cycles of the BZ reaction constitute a fluid automaton that im-
plements a chemical clock [2, 22]. Whilst it is the symbolic (as defined above)
organization of its molecules that specifies the reaction network topology, it is
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by the analog operation of the assembled reaction network that the clock like
phenomena of the BZ reaction arises.

The properties of atoms and molecules described above give chemistry a very
special set of macroscopic characteristics. For example, chemistry is produc-
tive. The capacity for chemical reactivity is unlimited, i.e. there are many more
possible reactions than could be implemented in any realistically sized system.
Indefinitely many molecules can be produced allowing indefinitely many reac-
tions. This is possible with only a finite set of distinct atomic types. Therefore,
an unbounded set of chemical structures must be composite molecules. In the
same way, an indefinite number of propositions can be entertained, or sentences
spoken. This is known as the productivity of thought and language, Therefore if
neural symbols exist, they must have the same capacity for being combined in
unlimited ways. This is not merely a crude analogy. No non-human animal has
the capacity for productive thought [45].

Secondly, chemistry is systematic; the capacity for atoms to be combined in
certain ways to produce some molecules is intrinsically connected to their ability
to produce others. Consider how a chemist might learn chemistry. There are
rules of thumb that help a chemist to guess how a molecule will react based on
its structure. A chemist does not learn just a list of valid reactions. In the same
way, there is systematicity in language, e.g. the ability to produce or understand
a sentence is intrinsically connected with the ability to produce and understand
other sentences. Languages aren’t learned by learning a phrasebook. Languages
have syntax.

Thirdly, the same atom makes approximately the same contribution to each
molecule in which it occurs. For example, the contribution of hydrogen to a water
molecule is to affect all sorts of properties of the reactivity of that molecule.
For example, hydrogen atoms have reducing power (i.e. they suck electrons)
wherever they bind in a molecule and this effect is a property of the hydrogen
atom itself. This means that there is systematicity in reactivity (semantics) as
well as in structure (syntax). This is known as compositionality. In the same
way, lexical items in sentences have approximately the same contribution to each
expression in which they occur. This approximate nature suggests that there is
a more fundamental set of ‘atoms’ in language than words themselves.

Let us also consider briefly why the idea of a chemical symbol system was
entertained in chemistry, that is, why scientists first came to believe in discrete
atoms coming together systematically to form molecules. The crucial discoveries
were of the systematic nature of chemistry. In Hudson’s “The History of Chem-
istry” he describes the following discoveries [28]. Lavoisier discovered a systematic
relationship in chemical reactions, i.e. the conservation of mass. Proust discov-
ered the law of definite proportions, i.e. that compounds when broken down,
produce constituents in fixed proportions. Dalton extended this to the law of
multiple proportions that explained that when two elements came together to
form different compounds (notably the oxides of metals), they would come to-
gether in different small integer proportions [28]. These results could elegantly
be explained by an atomic theory. We see that there are analogous reasons to
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believe in symbols in the brain, based on an examination of the properties of
human thought and language.

However, there are extra properties required of the PSS in cognition compared
to the PSS in chemistry. Cognition includes the capacity to learn an appropriate
PSS, not just to implement a PSS. Children can learn and manipulate explicit
rules [10, 36] which implies the existence of a neural physical symbol system
capable of forming structured representations and learning rules for operating
on these representations [41]3.

The following is a concise definition of a symbol system adapted from Har-
nad to emphasize the chemical aspects [26]. A symbol system contains a set of
arbitrary atoms (or physical tokens) that are manipulated on the basis of
“explicit rules” that are likewise physical tokens or strings (or more complex
structures, e.g. graphs or trees) consisting of such physical tokens. The explicit
rules of chemistry generate reactions from the structure of atoms and molecules
(plus some implicit effects, e.g. temperature). The rule-governed symbol-token
manipulation is based purely on the shape of the symbol tokens (not their “mean-
ing”), i.e., it is purely syntactic, and consists of “rulefully combining” and
recombining symbol tokens, in chemical reactions. There are primitive atomic
symbol tokens and composite symbol-token strings (molecules). The entire
system and all its parts — the atomic tokens, the composite tokens, the syntactic
manipulations both actual and possible and the rules — are all “semantically
interpretable:” The syntax can be systematically assigned a meaning e.g., as
standing for objects or as describing states of affairs [26]. For example, semantic
interpretation in chemistry means that the chemical system exhibits chemical
reactivity, and in biochemistry it means that the intra-cellular chemical system
stands for states of affairs in the environment outside the cell, for example the
conformation of a signaling molecule may represent the glucose concentration
outside the cell. In the same way a neural symbol system exhibits behavior such
as the child’s capacity to distinguish ABA from ABB in grammar learning tasks.

3 Gary Marcus has shown that 7 month old infants can distinguish between sound pat-
terns of the form ABA versus ABB, where A and B can consist of different sounds
e.g. “foo”, “baa” etc. Crucially, these children can generalize this discrimination ca-
pacity to new sounds that they have never heard before, as long as they are of the
form ABA or ABB. Marcus claims that performance in this task requires that the
child must extract “abstract algebra-like rules that represent relationships between
placeholders (variables), such as “the first item X is the same as the third item Y”,
or more generally that “item I is the same as item J” [42]. Several attempts have
been made to explain the performance of these children without a PSS (e.g. using
connectionist models) [50] but Marcus has criticized these as smuggling in symbolic
rules in one way or another by design [41, p.70]. For Marcus it seems that the system
itself must discover the general rule. In summary, the problem with a large set of
connectionist learning devices is that a regularity learned in one component of the
solution representation is not applied/generalized effectively to another part [41].
Marcus calls this the problem of training independence [42]. Marcus considers this
one of the fundamental requirements for a learning system to be described as sym-
bolic or rule based, and I agree.
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This chemical formulation may not seem of benefit, and may even be confusing
to linguists, but it certainly helps me to link these two domains of computation,
the biochemical and the cognitive, and this allows one to consider a new range
of computations.

3 A Neural Physical Symbol System

In this section I present the outline of a neural framework for arbitrary phys-
ical tokens (atoms) arranged into molecules or symbol structures. I show how
they can undergo explicit rule-governed symbol-token manipulation (reactions).
Finally I show how these explicit rule sets can be learned.

In a recent paper [16] we simulated a network of cortical spiking neurons [30,
32] with synaptic weight dynamics governed by spike-time-dependent plasticity
(STDP). STDP is an empirically observed process by which synaptic weights
change as a function of the timing of pre- and post-synaptic spike activity. If
a pre-synaptic spike reaches the post-synaptic neuron before the post-synaptic
neuron fires, then the strength of that synapse will increase. However, if a pre-
synaptic spike reaches a post-synaptic neuron after that post-synaptic neuron
fires, then the synaptic strength will decrease. This implements a kind of causal-
ity detector. If the pre-synaptic neuron caused the post-synaptic neuron to fire,
the synaptic strength will increase. When the extent of STDP is modulated by a
reward molecule such as dopamine, it is possible to solve reinforcement learning
tasks [32].

Consider first a possible neural representation of an atomic symbol token,
see Figure 1. At the top we see four examples of symbol-tokens consisting of
spatiotemporal patterns of spikes. The y-axis indicates which neuron the spike
will stimulate, and the x-axis indicates the axons down which the spikes are
passing from left to right. Thus, the depiction of the (purple) spatiotemporal
pattern on the left indicates that the middle neuron is stimulated 10ms later
than the top and bottom neurons (because the spikes have travelled further to
the right in the top and bottom axons than the spike on the middle axon). The
remainder of the figure shows the consequences of stimulating a chain of neural
connections with this spike pattern in the top left box. Each chain consists of
three synapses in series. There are three chains. The chain is activated by asyn-
chronously stimulating the first three neurons on the left of the chain. That is,
the top and bottom neurons are stimulated first, and then 10ms later the middle
neuron is simulated. The spikes will then flow down the axons of the chain (from
left to right) asynchronously activating the second and third layer neurons. It is
this spatiotemporal pattern of spikes that we define as an atomic neural symbol-
token. The diagram shows that detector neurons at various locations along the
chain can detect this spatiotemporal spike pattern if the axonal delays from the
pre-synaptic neuron to the detector neuron are properly matched to the spa-
tiotemporal pattern such that depolarization reaches the detector neuron body
simultaneously. If a summed voltage contribution from each neuron is necessary
to fire the detector, then only when the appropriate spike pattern is present will
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Fig. 1. Four possible spatiotemporal spike pattern based symbol-tokens are shown at
the top. Below one of these spike patterns is injected into a chain of neurons running
from left to right (three synaptic layers are shown). From top to bottom we see three
snapshots over time as this injected symbol-tokens passes from left to right along a
chain of parallel axons. Three possible detector neuron sites are shown in purple. The
detector neurons inputs are arranged with a set of delays such that all three spikes
reach the body of the detector neuron at the same time.
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the detector fire. This implementation of neural symbol-tokens (atoms) uses the
concept of polychronous computing and a modification of the concept of wave-
front computing [33, 34]. Of course, in real spiking neural networks with much
noise, it may be necessary to use a much larger spatial dimension in order to
deal with the temporal uncertainty of the position of any one spike, and with low
probability transmission at each synapse. However, the principles described here
remain unchanged. Also, one should not expect the chain to be neatly visible in
space. The chain is a topological concept and not a spatial concept.

The construction of molecular symbol structures from atomic symbol-tokens
requires binding of atomic symbol-tokens together [3, 40] such that they can
be subsequently manipulated (reacted) as a function of the structure of the
molecule. In my framework, compositional neural symbolic structures exist as
temporally ordered sequences of symbols along chains of neurons, see Figure 2.

O | (O | | (O | O
O L o—~11—~<o—1—=0
O | O I I (O | O

Fig. 2. A chain carrying 4 different spike patterns as a concatenated string.

This shows a snapshot of the state of a neural chain that carries the four
symbol-tokens shown in Figure 1. Imagine producing this pattern by stimulat-
ing the first three neurons on the left with the blue (far right), purple, green and
finally pink (far left) spike patterns in succession. Let us allocate each spatiotem-
poral pattern an arbitrary label, e.g. Pink (far left) = A, Green = B, Purple =
C, and Blue (far right) = D for convenience. Then this symbol-structure can be
described as a string or linear molecule of the form ABCD. I hypothesize that
a great many such short chains exist in the brain. Each chain can be consid-
ered to be a kind of register in a computer, blackboard or tape that can store
symbol-tokens of the appropriate size. A single symbol-token could be read by
a detector neuron with the appropriate axonal delay pattern when interfacing
with the chain. Similar detector neurons can exist for the symbol-tokens A, B
and D and as many others as the spatial width of the chain and the temporal
resolution of the neuronal detector allows.

Thus, I envisage a potentially large parallel symbol system in the brain con-
sisting of a population of such chains, each capable of storing a set of symbol-
token strings and operating on these strings in parallel. Interaction between (and
within) such chains constitutes the operations of symbol-manipulation. Return-
ing to the chemical metaphor, such interactions can be thought of as chemical
reactions between molecules contained on separate chains, and rearrangements
within a molecule expressed on the same chain. Whilst in a sense a chain can



Fluid Construction Grammar in the Brain 9

be thought of as a tape in a Turing machine (due to the serial nature of the
strings), it also can be thought of as a single molecule in a chemical system
(due to the existence of multiple parallel chains). This constitutes the core rep-
resentational substrate on which symbol manipulation will act. The reactivity
of symbol structures on these chains is described in the next Section.

A fundamental operation on a symbol token is to replace it with another
symbol-token, or simply to transform it in some way, see Figure 3. The network
figure shows a chain, again of three neurons width. Receiving input from the
chain and writing activity back into the chain is done by a detector neuron with
specific input and output delays in relation to the chain. A detector neuron (blue,
bottom) only fires when the correct pattern of input is detected (as described
above). In this case, the neuron’s input delays are set so that it recognizes (fires
for) patterns only of type D.

In the experiment the pattern of stimulation was given shown in Figure 3B.
The spike raster plot and the voltage plot (Figure 3C) show two spatiotemporal
patterns input to the input neurons, input pattern 1 and input pattern 2. These
both fail to make the classifier neuron fire. It can be seen that in this case
where the classifier fails to fire, the same pattern enters the chain as leaves the
chain. This is because the spatiotemporal organization of these patterns does not
match the spatiotemporal tuning curve of the detector neuron. Only when the
third spatiotemporal spike pattern is input does the detector neuron fire. Once
fired, the output of the detector neuron is injected back to the neurons of the
chain. If the output of the detector neuron slightly precedes the normal passage
of the untransformed pattern through the chain, then the refractory period of the
output neurons of the chain prevents interference by the original untransformed
pattern, which is thereby replaced by the new pattern specified by the detector
neuron. Such a detector neuron we will now call a classifier neuron because it
is a simple context free re-write rule with a condition (detection) and an action
pole of the type seen in Learning Classifier Systems (LCS) [27].

It can be seen that such classifier neurons are selective filters, i.e. the classifier
neuron is only activated if the spatiotemporal pattern is sufficiently matched
with the axonel delays afferent upon the neuron. The above classifier implements
an implicit rule. An implicit rule is a rule that operates on atomic or molecular
symbol structures without being specified (encoded/determined/controlled) by
a symbol structure itself. There is no way that a change in the symbol system,
i.e. the set of symbols in the population of chains, could modify this implicit
matching rule. The implicit rule is specified external to the symbol system.
Whenever the symbol D passes along this chain, it will be replaced by the new
symbol, irrespective of the presence of other symbols in the system.

In a symbol system (as in chemistry), symbols are manipulated (partly) on
the basis of “explicit rules” 4. This means that the operations or reactivity of

4 Quoting [26, p.335]: “Wittgenstein (1953) emphasized the difference between explicit
and implicit rules: It is not the same thing to ’follow’ a rule (explicitly) and merely to
behave ’in accordance with’ a rule (implicitly). The critical difference [between an im-
plicit and explicit rule] is in the compositeness (7) and systematicity (8) criteria.
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Fig. 3. The above circuit implements a context-free re-write rule. There are three input
channels in this case, although it is trivial to add more. The direct pathway is by a delay
line via an intermediate layer. The indirect pathway to the outputs is via a classifier
neuron (blue, bottom). Only if the delays match the inter-spike interval of the input
spike ensemble does the recognizer fire. Once fired, it sends signals down outputs with
delays that are set so that the desired output pattern is produced. Part B. A spike
raster showing the 3 input patterns and 3 output patterns produced in an experiment.
Patterns that do not match the re-write rule pass through the classifier neuron, but
those that do match the re-write rule are converted, and the passage through by the
original pattern is inhibited due to the refractory period of the output neurons (see
Part C which shows the voltages of input, output and classifier neuron). Also it is
possible to explicitly inhibit the passage of the original input, but this is not needed
here.
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symbols depends on/is controlled by /is causally influenced by their syntactic and
semantic relationship to other symbols within the symbol-structure and between
symbol structures. Figure 3 above showed a classifier neuron implementing an
implicit rule. This rule was not controlled by any symbols in the system; it
merely operated on symbols in the system. Figure 4 below shows a classifier
neuron and an inhibitory gating neuron can implement an explicit rule within
our framework.

The classifier and chain shown in Figure 3 is simply modified to include an
inhibitory gating unit that must receive a particular pattern of spikes (T for
trigger) in order for it to become active. The simplest relation is where T im-
mediately precedes X. Only when this is the case will the classifier neuron be
disinhibited. Only when the classifier neuron is disinhibited will X be converted
to Y. Otherwise X will pass through an inactive classifier (as will all other sym-
bols). This is formally a context-sensitive re-write rule. The rule is called context
sensitive because the conversion of X to Y depends on the relation of X to an-
other contextual symbol T. A set of context-sensitive re-write rules is capable of
generating a grammar of spike-patterns. Consider starting the system off with a
single symbol-token S. Probabalistic application of the rules to the initial sym-
bol S would result in the systematic production of spike patterns consisting of
grammatically correct context-sensitive spike pattern based sentences. A major
implementation issue in real neuronal tissue would be the fidelity of transmission
of spatiotemporal spike patterns. The information capacity of such a channel may
fall off with decreasing fidelity of copying in that channel in a manner analogous
to Eigen’s error catastrophe in genetic evolution [14].

However, the system so far described could not easily implement the kind of
rule that Marcus wishes a symbol-manipulation system to learn, namely to ex-
tract “abstract algebra-like rules that represent relationships between placehold-
ers (variables), such as ‘the first item X is the same as the third item Y’, or more
generally that ‘item I is the same as item J”’ [42]. This kind of rule requires hash
symbols which implement the concept of same and different, namely, If #1##1
then S, Else If #5#+#: then D. That is, if the first and last string are the same,
write S = same, and if the first and last strings are different write D = different.
In the absence of hash symbols of this type, a classifier system would have to
learn all the explicit rules for each possible pair of symbols at the first and last
position, instead of learning the general rule. Both systems would be systematic,
however, the system with hashes would allow a more concise specification of the
same level of systematicity, and may be easier to learn. But how can such hashes

The explicitly represented symbolic rule is part of a formal system, it is decompos-
able (unless primitive), its application and manipulation is purely formal (syntactic,
shape-dependent), and the entire system must be semantically interpretable, not
just the chunk in question. An isolated ('modular’) chunk cannot be symbolic; be-
ing symbolic is a systematic property... For systematicity it must be possible to
combine and recombine entities rulefully into propositions that can be semantically
interpreted. .. It is possible to devise machines whose function is the transformation
of symbols, and whose operation are sensitive to the syntactical structure of the
symbols that they operate upon.”
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Fig. 4. An explicit rule implemented by a classifier neuron and an inhibitory gating
neuron. The classifier neuron (blue, bottom) only fires if it is disinhibited by the neuron
at the top (red). This occurs only if T preceeds X as these spike patterns pass down
the chain from left to right. If T preceeds X, then X is converted into Y.
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be implemented within my framework? One method for obtaining hashes is that
a classifier neuron contains many delay lines from one channel so that it fires
for a range of spike delays along that channel. Another is that it is sufficient for
a classifier to be activated by only a subset of the spatiotemporal components
of a symbol-token. Another possibility for implementing a same/different rule is
shown in Figure 5.

QO output
ol—1 < XOR ~
<Y

O_I—I—< INPUT1 (O | O Y Y

INPUT 2 O

o—L1 <

A B

INPUT 3 O

Fig. 5. A method for detecting whether successive symbol-tokens are the same or differ-
ent (Left) Two pairs of sequentially presented symbols, AA and AB are shown (Right).
A device that is capable of identifying consecutive symbol pairs that are different, using
three XOR circuits in parallel.

On the left, the figure shows two pairs of sequentially presented symbols
flowing down two reaction chains, in this case, AA on the top chain and AB
on the bottom chain. On the right we see that the symbols AA from the top
chain have been sent to a chain that is capable of recognizing same/different.
This circuit is very simple and consists only of three XOR, gates implemented by
spiking neurons. The XOR function is at the heart of same/different classification
because it fires 1 for the inputs 01 and 10, but fires 0 for the inputs 00 and 11. In
this case, if two spikes are separated by 100ms along each channel then they will
cancel each other out. However, if only one spike is present then it will be capable
of activating the XOR gate. By setting the threshold of the output neuron it is
possible to detect adjacent symbol tokens that differ by some specified number of
spikes. The output neuron can write to the channel in the same way as described
for the implicit rule action, e.g. implementing the rule, If #;#+#: then S.



14 C. Fernando

It seems that the neural capacity for detection of same and different is a
significant departure from what can easily be achieved in chemistry! A neural
physical symbol system is capable of exploiting generalization mechanisms un-
available to chemistry. In chemistry there is no known molecular mechanism by
which one molecule can determine whether two other molecules are the same or
different, for any more than one pair of such molecules. The above mechanism
of detecting same and different is a neural basis for simple matching. We now
address the more difficult question of how a symbol system can be learned, and
later how hash matching can be learned.

A powerful architecture for symbolic search is XCS (accuracy based classifier
system) which combines Q-learning with a population of classifiers [7]. XCS
consists of a population of classifiers (which strongly resemble constructions)
with condition-action poles, C' — A. Each classifier has a fitness F that is related
to its accuracy in predicting the reward obtained in the next time step. At each
point in time a subset of the classifiers (called the Match Set) will match the
state of the environment. Classifiers proposing several possible actions may exist
in the Match Set. An action selection method is used to select the best classifier
most of the time, although sometimes actions using sub-optimal classifiers are
also executed for the sake of exploration. When the action is executed and the
reward obtained, then the prediction accuracy of the classifiers in the action set
can be updated. Selection then takes place between classifiers in the Match Set,
i.e. those with lower fitness are removed from the population. This is effectively a
niche-based selection that preserves representational diversity in the population
of classifiers. Learning classifier system have been used to evolve classifiers for
reinforcement learning tasks such as navigation, robotic control, but also for
function approximation [6] and the systematic approach used may be of interest
in FCG algorithmics.

The FCG and XCS both are algorithms that require replication of classifiers
(constructions). The neuronal replicator hypothesis states that replicators exist
in the brain and can undergo natural selection [17-20, 56].

In order for the argument that an FCG or XCS is implemented in the brain
to be plausible, and if such spatiotemporal symbols do actually exist, then it
is a fundamental prior question to explain how it is possible to replicate clas-
sifiers of the type shown in Figure 3 (implicit) and Figure 4 (explicit). There
are several steps to obtain replication of classifiers. The first is to understand
how a single classifier can be trained. Here we return to STDP. Using the STDP
based synaptic plasticity rules described previously it is possible to train a clas-
sifier neuron to fire only when exposed to a particular spatio-temporal pattern
of spikes. If we wish to train the output neuron to fire only for a particular inter-
spike interval between two input neurons, it can be done as follows. We assume
that each input neuron has many pathways for communicating with the output
neuron. For example dendrites form the post-synaptic neuron may connect with
the axon of the pre-synaptic neuron at many locations, a not unreasonable as-
sumption [8]. Alternatively, it may be the case that several neurons are involved
in the path from input to output neuron. In the model I assume delays of 5ms,
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10ms, 15ms, and 20ms each. Each weight from input to output neuron is initially
sub-threshold, i.e. insufficient to allow an action potential from an input neuron
to an output neuron to produce another action potential. In fact 3 input neurons
must fire for the output neuron to fire. Because only two pre-synaptic neurons
can contribute to a synchronous pulse, the output neuron should therefore never
fire! Indeed, only if a sub-threshold depolarization is provided by an external
teacher to the output neuron, will it fire, if at that same time it is sufficiently
stimulated by pre-synaptic neurons. In our experiments, sub-threshold (training)
depolarization of the post-synaptic output neuron was given 20ms after the de-
sired condition-spike-pattern was presented to the input neurons. Due to STDP
the appropriate weights from the input neurons to the output neuron increased.
The tuning curve of the output neuron was entrained, confirm it was possible to
train a classifier neuron to recognize particular interspike intervals [15]. The sec-
ond step was to train a classifier capable of reading and writing a spatiotemporal
spike pattern. During the training period the spike pattern to be recognized en-
tered along the 3 input channels with spikes at 0, 50ms and 100ms latency. This
pattern was presented 9 times. A short fixed time period after each input pattern
was presented to the input neurons, a pattern of sub-threshold depolarization
was presented to the output neurons. This output pattern was the desired output
pattern, which in this case is an inversion of the original pattern (although any
pattern can be trained). A set of alternative possible delay lines from each input
neuron to the classifier neuron, and another alternative possible set of delay lines
from the classifier neuron to each output neuron, was trained. In addition, the
classifier neuron was linked to a neuromodulatory inhibitory system blocked the
passage of the original spike-pattern if it was recognized. If it was not recognized
then the original pattern passed through to the outputs with a delay of 120ms,
unchanged in form, see [15] for a full description of the experiment.

This training procedure is sufficient for the classifier neuron to learn both
the input required to activate it, and the desired output. It should be clear that
the above supervised training regime for entraining the input-output function
mapped by one classifier can be trivially extended to allow replication of input-
output functions. This is because once a single classifier neuron has been trained,
this classifier neuron can train other classifier neurons in the following manner.
The plasticity of the first (trained) classifier neuron is held fixed. The input-
spike-pattern passes now to both classifiers, and the output of the first classifier
is used to produce sub-threshold output neuron depolarization in the second
classifier.

Systems that are capable of being trained by supervised learning, are typi-
cally also capable of training other such systems. The mechanism of copying by
supervised training/learning is exhibited in the mechanism of “didactic transfer”
of receptive fields that occurs by horizontal STDP and synaptic gain modifi-
cation during deaffarentation of visual cortex [59]. It is also exhibited in the
mechanism of copying of connection topology shown previously [18]. Recent ex-
periments show that such temporal specific training is indeed possible [35].
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4 FCG Specific Operations

Matching and merging is critical for FCG. Matching means comparison for equiv-
alence of two symbol structures X and Y [12][9][52]. In the simplest case, X and
Y are atomic symbols and there is a match if the atoms are identical. This can
trivially be done by writing X and Y to a chain. They should be separated by the
transformation interval; in the case of Figure 5 this is 100ms. If X and Y atoms
are identical then the classifier fires. We admit the fact that this delay imposes
a very severe constraint on the number of possible matches, and it is necessary
to think carefully about how faster matching could be done. Let us assume that
matching requires sending the two patterns to a location in the brain that can
do the matching. The process by which such flexible transport can be achieved
is highly non-trivial and as yet we have no explanation for this. One possibility
is that matching occurs in one of the sub-cortical structures that receive many
incoming connections from a wide range of cortex, e.g. the cerebellum or the
basal ganglia. Indeed the striatum of the basal ganglia is responsible for match-
ing in Anderson’s ACT-R cognitive architecture, although he does not give an
explanation of how it should occur there [1].

The introduction alluded to how perceptual mechanisms could be exapted for
symbolic operations. An example is now given for the case of matching in FCG.
The experiments in [37] use rapid reversible synaptic plasticity (dynamic link
matching) to learn classes of visual transformation, e.g. reflection, rotation etc.
The same mechanism can be applied to the unsupervised learning of the concept
of same and different in a symbol system. The power of the method is that it can
generalize, i.e. it is only necessary to show a subset of possible instances of same
and different symbols for the system to be able to extend this same/different
classification to novel symbols or symbol structures. The dynamic link matching
algorithm has recently been applied to spiking neural networks [46]. Related
algorithms are used for auditory scene analysis [5]. It is conceivable that the
same perceptual mechanisms used for interpreting sensory input are also used
for interpreting internally generated symbolic inputs that are similarly encoded.

A more complex case of matching occurs where X and Y are not atomic but
consist of an unordered list of elements. Here X and Y are equivalent if the list
contains the same elements, e.g. match(’(a b ¢)’, ’(a b ¢)’) = true but also (’(a
b ¢)’, ’(b a c)’) = true. The next level of matching complexity occurs when X
and Y are trees. Matching can either ignore or take into consideration the order
of branching, e.g. if ignored a(bc) = a(cb) but in both cases a(b(c)) != a(bc).
The next step is partial tree matching, which is when some elements of X are in
Y, but there are no elements in X that are not in Y: e.g. (a (d (e g))) partially
matches with (a (b ¢) (d (e f g))).

Following matching of two symbol structures there can be merging. Merge
takes already constructed objects and constructs from them a new object. Merge
assumes that there has been a partial match and then adds everything of Y that
is not in X to X. So when X = (a (d (e g))) partially matches with Y = (a (b
c) (d (e fg))), then X becomes X’ = (a (b ¢) (d (e f g))). Note that Y is left
unchanged and can undergo further matches with other structures. The merge
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operation involves the copying of a symbol on the basis of the result of a match
comparison. Therefore it is a type of explicit re-write rule. It is special because
it requires hash based re-write, i.e. the rule does not just say if XT write TX,
it says for example, if #1#2 write #2#,. That is, the re-write must work for
a range of symbols. Whether this is plausible within our framework is not yet
known. We are not yet able to provide plausible neuronal mechanisms capable
of dealing with the more complex merge operations described above.

5 Discussion

There are several alternative connectionist type theories for the implementation
of 'mental representations’ or symbol-structures in the brain, but these are not
considered in detail here [4, 38, 41, 47, 51]. I believe that it is more straightfor-
ward to face the problem head on. That is, to acknowledge that we need a full
physical symbol system in the brain, and then to relax our biases about how
such a physical symbol system could in fact be implemented. Thinking about a
chemical symbol system helps me to do this.

There is some weak neurophysiological evidence for spatiotemporal spikes
as symbol-tokens. The discovery of “cortical songs” is suggestive that discrete
unique tokens such as symbols can be encoded as spatiotemporal patterns of
spikes. Cortical songs are higher-order sequences of spike patterns repeated
in the same sequential order observed in neocortical brain slices, of the form
[A,C,D,E,F]|[A,C,D,E,F] for example where each letter represents a stereotyped
polychronous pattern of activity [29]. Furthermore, there is evidence for the
training methods we used to train classifiers, for example, synaptic inputs at
distal dendrites can act as supervisory signals in the Hippocampus [13]. This
maps to the sub-threshold depolarization we used to train classifier and output
neurons. Several other papers also demonstrate methods for supervised training
of spike classifiers, and so our classifier replication mechanism is by no means
out of the blue. For example, the “Tempotron” is an example of learning to clas-
sify specific spatiotemporal patterns of spikes using a gradient-descent type rule
to adjust weights on the basis of how rapidly a pattern results in firing of a
classifier leaky-integrator neuron [25], see also [48]. Therefore, there is a growing
body of work showing how replication of spatiotemporal spike pattern classifiers
is possible.

In short, first I presented a plausible implementation of symbol-tokens in a
brain. I then presented the core operation of an algorithm for learning symbol
manipulation rules, i.e. replication of the input/output function of a classifier
neuron. I have described elsewhere the details of a cognitive architecture based
on a learning classifier system to learn simple syntactic rules [15]. These three
components serve may provide a core for further work on understanding the
neuronal basis of fluid construction grammar.
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