
Notice

This paper is the author’s draft and has now been published officially as:

Loetzsch, Martin (2012). Tools for Grammar Engineering. In Luc Steels (Ed.),
Computational Issues in Fluid Construction Grammar, 37–47. Berlin: Springer.

BibTeX:

@incollection{loetzsch2012tools,
Author = {Loetzsch, Martin},
Title = {Tools for Grammar Engineering},
Pages = {37--47},
Editor = {Steels, Luc},
Booktitle = {Computational Issues in {Fluid Construction Grammar}},
Publisher = {Springer},
Series = {Lecture Notes in Computer Science},
Volume = {7249},
Address = {Berlin},
Year = {2012}}

Tools for Grammar Engineering

Martin Loetzsch

Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Belgium

Abstract. Developing a FCG grammar can easily become very complex
when larger sets of interdependent constructions are involved and when
consequently tracking down mistakes in single constructions or analyz-
ing the overall behavior of the system becomes difficult. FCG supports
users in this task by providing interfaces for accessing most of its inter-
nal representations together with powerful debugging and visualization
tools. This paper will outline some of these interfaces and explain its
visualization components in detail.

1 Introduction

Fluid Construction Grammar is a formalism for defining grammars along the
lines advocated by construction grammarians and a theory and implementation
on how sentences are parsed and produced using construction grammar [4]. Un-
like many other implementations of grammar formalisms, FCG does not come
with a standalone program that is started once and then provides a (possibly
graphical) user interface for editing and testing grammars – FCG is rather a
software framework that users directly interact with. FCG is written in the
programming language Common Lisp [3], which is commonly used in artificial
intelligence and computational linguistics. The choice of Lisp makes it very easy
to adapt FCG to a variety of usage scenarios because Lisp allows for powerful
yet simple abstractions that flexibly wrap core mechanisms for specific uses. Lisp
makes it also easy to write macros that allow the definition of constructions by
specifying only their relevant features (and thus avoid writing redundant code).

In addition to the increased flexibility of use, the choice of Lisp as a pro-
gramming language means that the traditional time consuming “edit - compile
- test cycle” (i.e. changing code, then compiling the program and then testing
it) does not exist. Instead, users load the FCG framework into a Lisp program-
ming environment and then on top of that develop and test their grammar or
multi-agent experiment. During that, the “Lisp image” (i.e. the “program”) is con-
stantly running and changes (e.g. adding constructions or changing functions)
have immediate effect on the state of the system.

A minimal example of a typical interaction with FCG is shown in Figure 1
(see [5] for a first introduction to FCG). The GNU Emacs text editor (shown
on the right) serves here as a Lisp environment, but any other Lisp IDE can
be used. The Emacs window contains a Lisp file with a variety of Lisp expres-
sions that each are manually evaluated by the user to change the state of the
Lisp image (but such a file can also be loaded and evaluated automatically as

Tools for Grammar Engineering 3

Fig. 1. Interacting with FCG. On the right, a Lisp development environment (here
GNU Emacs) containing a minimal example of using FCG is shown. The result of
evaluating some of the expressions in the example (such as adding a construction to a
set and parsing an utterance) is then visualized in real-time through a standard web
browser (here Safari, on the left).

4 M. Loetzsch

a part of a larger application). The first two expressions (asdf:operate ..)
and (in-package ..) load the FCG framework into the current Lisp image
so that from then on it can be used by the user. Then an empty construction
set is created (defparameter ..) and a monitor for visualizations is activated.
The fifth expression (add-cxn ...) adds a new construction to the previously
created construction set and the notification “Added red-cxn to construction-set
(1)” appears in the web browser window. Finally, the utterance “red” is parsed
and some graphical output of FCGs processing appears in the web browser.
Changing the previously defined construction or adding new constructions does
not require to repeat all the steps above because the Lisp image is still running
and thus developing a grammar is a continuous process of adding or replacing
constructions and then trying them out.

The learning curve for new users of FCG is quite high because they have to
learn how to work with a Lisp environment. However, there are detailed instruc-
tions for getting FCG running on all major platforms / Lisp implementations
and once this initial hurdle is taken, interacting with FCG becomes an inspiring
experience. Part of this experience is an extensive visualization and debugging
component, which we will introduce in Section 2 and explain in a bit more in
Section 3.

2 Understanding FCG processing

Producing or parsing utterances in FCG involves complex processes that depend
on the interplay of the involved constructions as well as often unpredictable ex-
ternal systems for discourse, semantics and learning. Consequently, understand-
ing the behavior of such processes may become quite a challenge. For example
it can be very difficult to track down which construction needs to be changed
when a production or parsing process fails, or to analyze which construction is
responsible for an undesired utterance or meaning. Even when the behaviour is
as expected it might be far from trivial to understand or show why this is the
case, or for example how a grammar could be further refined. Furthermore, when
FCG is applied in multi-agent learning scenarios where constructions are con-
tinuously created, adapted or removed by agents or where systems for embodied
semantics provide open-ended streams of conceptual structures, the behavior of
FCG grammars can not be tested in isolation because it tightly interacts with
all these other subsystems. These sorts of difficulties in understanding the un-
derlying dynamics of complex software systems are a common problem in many
areas of computer science such as robotics, artificial intelligence and distributed
systems.

The probably most common approach to tackle this problem is tracing, i.e.
by printing information about what is going on to to the Lisp listener (either by
directly adding print statements to the code or by using built-in trace facilities
or other custom mechanisms). The advantages of this technique are that (1) it is
very easy to do and (2) it allows to monitor program execution at almost any level
of detail (i.e. from only the result of applying a construction set to near-complete

Tools for Grammar Engineering 5

information including all intermediate processing steps). When the level of detail
is high however, the output rapidly becomes unmanageable: complete traces of
FCG search processes can reach hundreds of text pages. Furthermore, plain text
in a Lisp listener is not easy to read and can only be presented linearly which
makes it impractical for getting an overview of, or a ‘feeling’ for, particular
dynamics of FCG.

A second method is to retrospectively analyse a search process by inspecting
Lisp objects – either using inspector tools of Lisp environments or by directly
calling chains of accessor functions on an object. As we will explain further below,
FCG allows users to access detailed data representations of most of its internal
processing steps so that the complete chain of operations can be reconstructed.
Inspection has the advantage that it does not require to change or write any code
but on the other hand does not provide any overview of a process whatsoever.
Furthermore, accessing for example a node deep in a search process requires a
high number of manual steps and often it is unclear which one of the many
objects to inspect, which prevents inspection to be useful in many cases.

Third, many Lisp implementations and development environments provide
mechanisms for manually stepping through code either by using the built in
step facilities or by invoking the stepper directly from the code. This technique
can be very helpful for finding logical mistakes in small pieces of code, but in
order to make use of stepping one has to know which part of the code to look
at. Stepping through a large construction set application just for exploring its
dynamics would take hours and is thus impracticable.

A last technique is to create visualisations: they are great to get an intuition
of an algorithm’s dynamics because our mind understands graphical representa-
tions much better than text output, which is why in areas such as for example
robotics it is exceptional to even write programs without having graphical means
to verify that the system behaves as expected (ideally even for each intermedi-
ate step). Visualisations are costly, because it takes time to implement them,
but they often pay off in the long run when they become an invaluable eye into
the system’s internals. A clear disadvantage is that visual representations only
allow for a low to medium level of detail: complex data structures have to be
transformed into two-dimensional (or sometimes 3D) representations, involving
constraints such as available window size and a required visual clarity so that
the representation remains readable. Furthermore, despite many recent devel-
opments in cross-platform libraries for graphical user interfaces, there is none
that easily works in all major Common Lisp implementations and there is a lot
of overhead in dealing with windows, menus and other user interface elements,
event handling and the interaction with the actual code to monitor. Finally, FCG
processing relies on many textual (i.e. semantic structures) and hierarchical (e.g.
feature structures, search processes) data structures, which in turn are hard to
visualise. Although virtually every graphic library has means to display text on
the screen, the responsibility for arranging text blocks (estimating widths an
heights of text areas depending on available space, avoiding overlap, re-flowing

6 M. Loetzsch

multi-line text) is usually in the hand of the programmer.

The implementation of the FCG formalism comes with an extensive user
interface (called web interface) that combines many of the advantages of the
previously introduced techniques, while at the same time removing most of their
respective disadvantages. The main idea (we will go into some of the details
in the next section) is to use a normal web browser as a terminal for tracing
internals of FCG. That is, information is “printed” in real time to the web browser
window instead of to the Lisp listener. This already has the advantage that
different colors, text styles, backgrounds and many other graphical means can
be used to make representations more readable than if there were printed as
plain text. Second, recent advances in HTML rendering engines have made it
possible to create tree-like representations (for feature structures, search trees,
etc.) that are automatically laid out by the client browsers so the available screen
space is used as economically as possible. And third, scripting mechanisms of
contemporary web browsers allow to create expandable and collapsible elements
so that details of a structure or a process can be initially hidden but then be
recursively revealed if the user clicks on them, thus enabling to display the most
important information of a structure or process in a single browser window,
while still providing access to the smallest details. Forth and finally, current web
technologies enable to interact with FCG grammars through the browser window
(e.g. applying constructions to previously selected transient feature structures
with a mouse click).

An example for such interactive visualizations is shown in Figure 2. The ut-
terance “block” is parsed and as a side effect, a condensed visualization of the
involved processes and representations is sent to the web browser. This high-level
summary shows the utterance, the applied construction set, the initial coupled
feature structure, a visualization of application search tree, the applied con-
structions, the final coupled feature structure and finally the resulting semantic
structure are shown. This information is already enough to get a good overview
of what happened, that is, whether the processing succeeded, which construc-
tions were applied in which order and what the resulting utterance or semantic
structure is. Showing only this little information has the advantage that even
the processing of larger utterances or meanings can still be visualized in a single
browser window.

This information is already enough to verify whether the grammar behaves
as expected. However, when developing a set of constructions for a particular
linguistic example, this is usually not the case and finding out which construc-
tions need to be changed to yield the desired result is far from trivial. FCG helps
with this by making virtually all of its internal representations and intermedi-
ate processing results accessible through graphical representations that reveal a
more detailed (and bigger in terms of screen space) version when the user clicks
on them. For example, each node in a application search initially only shows
only the name of the applied construction (which results in a compact represen-
tation of the search tree), but when expanded, near-complete information about

Tools for Grammar Engineering 7

top

top

Parsing "block"

Applying construction set (70) in direction

Found a solution

initial
structure top

application
process

applied
constructions

resulting
structure

top

Meaning:
((apply-class ?ref-2 ?src-2 ?class-1) (bind object-class ?class-1 block))

sem syn

initial

top

top

cxn-applied

application result

status cxn-applied

source
structure top

applied
construction

resulting
structure top

resulting
bindings

((?form-84 form ((string block-83 "block")))
(?block-unit-2 . block-83) (?top-39 . top))

added in
first merge block-83

added in
second
merge

block-83

cxn supplier :ordered-by-label

remaining labels (cat gram)

remaining cxns (right-lex speaker-lex unique-lex hearer-lex)

block-morph (morph t)

sem syn

block-morph (morph t)

sem syn
block-83 block-

lex
(lex t)

noun-
cat
(cat t)

noun-cat (cat t) block-lex (lex t) block-morph (morph t)

noun-unit-
273

footprints

meaning

ref

sem-cat

block-83

(block-lex)

((bind object-class
?class-1 block))

?class-1

((sem-function
((value ?sem-function-value-4)
(valence (identifier))))

(class (object-class)))

sem syn noun-
unit-273

block-
83

expanded search tree node

expanded unit

Fig. 2. Example output produced by the web interface. The search tree node
(block-morph) and unit (block-83) of the resulting structure have been manually
expanded.

8 M. Loetzsch

the construction application, goal tests and other internals of the application
process are shown. Concretely, as shown in the center of Figure 2, the expanded
versions of search tree nodes contain some search status information, the tran-
sient structure to which the construction was applied, the applied construction,
the resulting transient structure, bindings that show what things the variables
in the construction matched with and information about what was added to
which unit in the first and second merge phase. Many of these representations
such as constructions or transient structures can in turn be further expanded,
as for example shown at the bottom of Figure 2, where the unit block-83 of
the final coupled feature structure is expanded to show all of its features. Some-
times, when a goal test requires running another construction set application,
the whole search tree of that process will be also shown within that particular
node, leading to quite deeply nested visual representations. This exploratory as-
pect of the interaction with FCG is best experienced firsthand and readers are
invited to try out the examples at www.fcg-net.org.

In addition to allowing users inspect most processing details of FCG, some
representations can also be manipulated through the web interface. When the
mouse is moved over the graphical representation of a construction, a coupled
feature structure, or a search node, a small menu appears that offers a set of
operations on the structure:

For search nodes, these operations include rendering the transient structure
of the node into an utterance or extracting its meaning, saving the actual node
or its transient structure to a global variable so that it can be accessed from
within Lisp, and restarting the search process below the node. Furthermore,
the pop-up menu of constructions contains operations for saving and printing
the construction as well as for applying the construction to a previously saved
transient structure in parsing or production. Finally, coupled feature structures
also can be saved, printed, rendered, etc. – additionally there are operations for
applying all constructions of the construction inventory to the structure in order
to see which constructions apply and which not.

All these mechanisms help FCG users to quickly find and fix problems in their
grammars. For example, in order to find out why a construction that should
have been applied did not apply, the expandable graphical representations of
construction application search trees make it easy to find the last “correct” tran-
sient structure, which can be saved through its menu to a global variable and
then can be compared to the construction in question side by side. The changes
to the construction are made in the Lisp editor, but as soon as the construction
is added to a construction inventory, a graphical representation of the changed
construction will appear in the web browser, where it can be applied to the
saved transient structure through its popup menu. This isolated application test
is continued until the construction behaves as expected and can be tried out
again within a complete production or parsing process.

Tools for Grammar Engineering 9

3 The web interface and monitoring system

FCG shares its visualization and monitoring mechanisms with other systems for
discourse, semantics and learning under the umbrella of the Babel2 framework
[2, 6]. The web interface is described in detail in [1] and the monitoring system
in [2, Chapter 3], but we will nevertheless outline some basic design choices and
components in this section.

The web interface is based on the HUNCHENTOOT web server that runs
in the same Lisp image as FCG/ Babel2 and is loaded automatically with FCG.
Web browsers connect to the web interface by loading an empty client page and
then content can be pushed to that page from within Lisp through an AJAX-
based client-side event loop that frequently polls the web server for new ele-
ments to display. Creating HTML elements in Lisp is a straightforward trans-
formation of s-expressions such as ((p :style "color:red") "hi!") into <p
style="color:red">hi!</p>" and with these basic mechanisms it is already
possible to create program traces that are much more readable and informa-
tive than plain text because different colors, a multitude of font styles, sizes,
backgrounds or borders can be used.

Contemporary HTML rendering engines are extremely good in distributing
the available browser window width among recursively nested child elements,
and in re-flowing the layout when the window size changes or when more data
is added to the page). FCGs web interface heavily exploits these abilities by
providing general mechanisms for drawing tree-like structures (such as search
trees, feature structures, constructions) in HTML. Tree nodes and horizontal
and vertical lines connecting them are created as recursively nested tables and
the web browser then takes care of fitting the tree in the available space and
of adjusting the width of the nodes accordingly. Furthermore, as many of FCGs
representations are Lisp s-expressions (e.g. semantic structures, feature values of
coupled feature structures), and experienced Lisp users strongly rely on proper
indentation of parentheses, the web interface can create HTML representations
of s-expressions that automatically adopt their width to the available space,
while remaining properly indented. As shown in Figure 3, this flexible layout of
feature structures (and other tree-like representations) results in a very efficient
use of (precious) browser window space.

A second key feature of the web interface is the way in which complex data
and control structures can be displayed: the level of detail of what is visualised
is not restricted by the size of the web browser window. The trick is to create
simplified visual representations of data that expand into a detailed version when
the user clicks on them and that collapse to their original state when clicked a
second time. As for example explained above in Section 2, for a production or
parsing process the user initially is presented with the main results of the appli-
cation process and the search tree and then can get to almost any intermediate
representation by clicking through the HTML elements in the client page. Tech-
nically, the web interface internally stores for each of expandable elements both
a collapsed and expanded version (actually anonymous functions are stored to
avoid computing HTML code that never gets requested). The collapsed version

10 M. Loetzsch

Fig. 3. Example for a resizing HTML representation of a feature structure. The same
semantic pole of a transient structure is automatically rendered by the Safari web
browser to fit into a horizontally constrained space (top) or a more wide browser
window (bottom).

Tools for Grammar Engineering 11

is initially sent to the client page, and when the user clicks on the element the
expanded version is requested from the Lisp side using Ajax communication.

The use of lexical closures makes the web interface very fast and responsive,
but users may not always want the visualizations to be computed (or switch be-
tween alternative visualizations). The monitoring system of FCG/ Babel2 solves
this issue (for details see chapter 3 of [2]). The main idea is to not clutter the
source code of FCGs implementation with code that produces debug traces, but
rather to have a event/ notification/ event handler system that separates actual
code from debugging and visualization mechanisms. For example, after each ap-
plication of a construction set, an event is triggered that notifies a list ofmonitors
of the finished application. Those monitors that are active can then handle this
event, for example by adding visualizations to the web interface. Consequently,
FCG users can switch different visualizations on and off by activating/ deacti-
vating monitors.

Finally, advanced users of FCG and Lisp can easily create their own visual-
izations and monitors for their specific experiments. The web interface provides
mechanisms for defining client side Javascript and CSS code fragments, for re-
placing and appending the content of existing HTML elements, and so on. When
the basic graphical capabilities of HTML are not sufficient for certain visualisa-
tion purposes, SVG graphics or Flash animations can of course be also sent to
the client page.

4 Conclusions

The tools for grammar engineering introduced in this chapter have changed the
way users of FCG interact with the system, not only making the experience
richer, but also more trouble-free. Meaningful processing traces allow FCG de-
velopers to debug and make sense of the formalism itself and they help FCG
users to see the effects of their linguistic rules by having access to all details
of the parsing process without losing a general overview. Some dynamics that
were previously mystifying and impenetrable have cleared up and as a welcome
side-effect newcomers to FCG grasp the material at a considerably faster speed
because of the way they can interact with and gradually investigate the dynam-
ics. Furthermore, having detailed visualizations is very helpful explaining the
working of FCG to other audiences – in fact most of the graphics in this book
are visualizations created by the web interface.

Using a web server and web browsers as the main technology for designing a
user interface might seem as an unusual choice and indeed only a few years ago
it would not have been feasible to implement a system such as described here.
Although our present-day web standards are much older, they were only poorly
supported making it strenuous for web developers to ensure the interoperabil-
ity of their web sites in different browsers. Fortunately, things have improved.
Today valid XHTML+CSS code is properly interpreted by a variety of browsers
and AJAX has become an ubiquitous technology that just works. Particularly
impressive is the way contemporary HTML rendering engines are able to lay-

12 M. Loetzsch

out (and re-flow) heavily nested HTML constructs with incredible speed and
perfectly looking in almost all cases. Furthermore, not needing to rely on other
external libraries for user interfaces than (readily available) web browsers makes
the visualization component of FCG/ Babel2 very lightweight and easily em-
ployable on a wide variety of Lisp implementations and platforms.

Acknowledgements

The research in this paper was conducted at the Artificial Intelligence Laboratory
at the Vrije Universiteit Brussel (VUB AI lab) and is partly funded through the
EU FP7 ALEAR project.

Bibliography

[1] Loetzsch, M., Bleys, J., Wellens, P.: Understanding the dynamics of complex
lisp programs. In: Proceedings of the 2nd European Lisp Symposium. pp.
59–69. Milano, Italy (May 2009)

[2] Loetzsch, M., Wellens, P., De Beule, J., Bleys, J., van Trijp, R.: The Babel2
manual. Tech. Rep. AI-Memo 01-08, AI-Lab VUB, Brussels, Belgium (2008)

[3] Steele, G.L.: Common LISP: The Language. Digital Press, Bedford, MA, 2.
edn. (1990)

[4] Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

[5] Steels, L.: A first encounter with Fluid Construction Grammar. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[6] Steels, L., Loetzsch, M.: Babel: a tool for running experiments on the evolu-
tion of language. In: Nolfi, S., Mirolli, M. (eds.) Evolution of Communication
and Language in Embodied Agents, pp. 307–313. Springer-Verlag, Berlin
Heidelberg (2010)

