Notice

This paper is the author’s draft and has now been published officially as:

Sierra, Josefina (2012). A Logic Programming Approach to Parsing and Produc-
tion in Fluid Construction Grammar. In Luc Steels (Ed.), Computational Issues
in Fluid Construction Grammar, 239-255. Berlin: Springer.

BibTeX:

@incollection{sierra2012logic,
Author = {Sierra, Josefinal},
Title = {A Logic Programming Approach to Parsing and Production
in Fluid Construction Grammar},
Pages = {239--255},
Editor = {Steels, Luc},
Booktitle = {Computational Issues in {Fluid Construction Grammar}},
Publisher = {Springer},
Series = {Lecture Notes in Computer Sciencel},
Volume = {7249},
Address = {Berlin},
Year = {2012}}

A Logic Programming Approach to Parsing and
Production in Fluid Construction Grammar

Josefina Sierra Santibanez

Universidad Politécnica de Cataluna, Barcelona, Spain

Abstract. This paper presents a Logic Programming approach to pars-
ing and production in Fluid Construction Grammar (FCGQG) [13]. It builds
on previous work on the formalisation of FCG in terms of First Order
Logic (FOL) concepts, more specifically on the definition of its core in-
ference operations, unification and merge, in terms of FOL unification
and search in the space of a particular set of FOL terms called structure
arrangements. An implementation of such inference operations based on
Logic Programming and Artificial Intelligence techniques such as unifi-
cation and heuristic search is outlined.

1 Introduction

Fluid Construction Grammar (FCG) [10] is a grammatical formalism imple-
mented in Lisp [6] which incorporates ideas from Construction Grammar [3] and
Cognitive Grammar [5].

It has been used in a number of experiments [11, 15] investigating the symbol
grounding problem [4] in populations of autonomous agents connected to their
environment through sensors and actuators. These experiments focus on the
study of the evolution and the acquisition of language [9] in particular on the
acquisition of grammar and the role of grammar in language grounding, empha-
sising the communicative function of grammar as well as the relation between
grammar and meaning [14].

FCG also draws inspiration from observations of language usage [18], which
suggest that natural languages constantly adapt and evolve to cope with new
meanings and variations in the behaviour of language users. The experiments
themselves are designed to implement and test a constructivist approach to lan-
guage development [16], in which grammatical constructions are acquired grad-
ually, beginning with concrete linguistic structures based on particular words,
from which they are progressively abstracted.

From a computational point of view, FCG is fully operational [1, 17] and
it has been used in a considerable number of experiments. However its basic
inference operations, unification and merge, are only defined intuitively in the
linguistics literature. A formalisation of the unification and merge algorithms
used in FCG has been proposed by its developers in [12]. Formal definitions of
FCG concepts in terms of First Order Logic and Order-Sorted Feature Constraint
Logic have also been presented in [8] and [2]. The present paper outlines an

A Logic Programming Approach to Parsing and Production in FCG

approach to parsing and production in FCG based on Logic Programming and
Artificial Intelligence techniques such as unification and heuristic search.

The rest of the paper is organised as follows. Section 1 describes the repre-
sentation formalism used in FCG. Section 2 summarises the formal definition
of unification and merge proposed in [8]. Section 3 illustrates the usefulness of
such definition with two examples of construction application. Finally, section 4
presents an outline of an FCG-unification algorithm based on logic programming
techniques through an extended example.

2 Representation Formalism

2.1 Semantic and Syntactic Structures

Linguistic and semantic information is represented using syntactic and semantic
structures in FCG. A semantic or syntactic structure consists of a set of units,
which correspond to lexical items or constituents such as noun phrases or rel-
ative clauses. A unit has a name and a number of feature-value pairs. In this
paper, we will assume that semantic units contain the features sem-subunits,
referent, meaning and sem-cat, in that order; and syntactic units the features
syn-subunits, utterance, form and syn-cat. Feature values depend on the type of
feature: referent and utterance have a single value, whereas the values of sem-
subunits and syn-subunits are sets of unit names. The values of the rest of the
features are sets of facts about different aspects of the components of a structure:
meaning is a set of facts which can be used to identify the referent (e.g. its shape,
colour, type of entity or event); semantic categories describe more abstract as-
pects of the referent (e.g. its role as the agent, object or recipient in an action);
form and syntactic categories specify different aspects of the utterance, such as
its number, part of speech, stem or grammatical role (e.g. subject, predicate or
object). The set of facts which may be included in the values of these features
is not restricted to those just mentioned but open ended.

We will use lists to represent those facts. For example, the fact that unit-2
is a noun will be represented by the list (part-of-speech unit-2 noun). This
notation allows using First Order Logic variables for syntactic and semantic cat-
egories [7]. In particular, we will use a many-sorted language with two types: list
and atom'. We shall also assume that the elements of the lists representing facts
are always variables or constants of type atom, and that any symbol preceded
by a question mark is a variable.

! There is a binary function symbol cons: Atom x List — List and a constant
symbol NIL of type list, which allow constructing terms of type list. For ex-
ample, the term (part-of-speech unit-2 noun) is an abbreviation for the first
order logic term (cons part-of-speech (cons unit-2 (cons noun NIL))), where
part-of-speech, unit-2 and noun are constant symbols of type atom.

4 J. Sierra Santibanez

2.2 Constructions

In FCG inference is performed applying constructions to source structures. A
construction is a pair <left-pole> < <right-pole> of pattern structures which
usually associates a syntactic pattern with a semantic pattern (see figures 2 and
1). Constructions play therefore the role of grammar rules in construction gram-
mars [3]. However they not only relate syntactic patterns to semantic ones but
also supply information required for parsing and generation which is not included
in lexical items, making it possible to construct sentences whose meaning is more
than the sum of the meanings of their parts.

Source structures (i.e. semantic and syntactic structures of the type we have
described before) constitute the input to parsing and production processes in
FCG, whereas constructions are used to add semantic and syntactic information
to source structures, that is, to complete missing aspects in these structures,
such as the identity of the agent in an event or the subject of a verb.

Formally, the application of a construction is a combination of two operations:
Unification, which is used to check whether a construction is compatible with
a source structure; and merge, which extends the structure with information
contained in the construction [12].

3 Unification and Merge

3.1 Feature-value Unification

Unification for feature-values depends on the type of feature. First Order Logic
unification can be used to compute the most general unifier (mgu) of two features
whose values are single terms. However, when feature values are sets of terms
(unit names or facts represented by lists of atoms), a number of issues must be
taken into account before First Order Logic unification can be applied.

Feature-value Arrangement Let s = {t1,...,t,} be a feature value of type set
of terms (unit names or facts represented by lists of atoms) of a semantic or
syntactic source unit. An m-arrangement of s is a list v = (¢;,,...,t;,), where
ti; € sfor j =1...m, and t;; are all distinct. An m-arrangement is thus a list
in which m distinct elements of s are organised in a particular order.

Feature-value Unification Let s = {a1,...,a,} be a feature value of type set of
terms of a source unit and p = (== b1,...,b,,) a feature value of type set of
terms of a pattern unit?. We say that s and p are FCG-unifiable if there is an
m-arrangement s’ of s such that the First Order Logic terms s’ and p of type
list of terms are unifiable, and we call the most general unifier o of s’ and p an
FCG-unifier of s and p.

2 Note that we use list notation (round brackets), rather than set notation (curly
brackets), for specifying pattern feature values of type set of terms. The reason is
that we need not consider the m-arrangements of pattern values.

A Logic Programming Approach to Parsing and Production in FCG

The symbol == in the pattern feature value is used in FCG to indicate that
the source feature value should include the pattern feature value, but that they
need not be exactly the same set. If the symbol == is omitted from the list
representing the pattern feature value, then it is understood that both sets, the
source and the pattern, must be equal after unification.

Feature values of type set of terms in FCG patterns may take thus one of
the following forms:

1. (== t1,...,tm), specifying a set of terms which should be included in the
value of a particular feature in a source structure; or

2. (t1,...,tm), specifying a set of terms which should be equal to the value of
a particular feature in a source structure.

Note that there can be several FCG-unifiers for a pair (s, p) of source and pattern
feature values. Because two different arrangements s; and s, of s might be such
that p and s; are unifiable, and so are p and s5, but s; and ss are not.

3.2 Feature-value Merge

Merge is used to extend a semantic or syntactic source structure with additional
information contained in a pattern structure.

If the pattern and source feature values are FCG-unifiable, merge is equivalent
to unification?. However, when the pattern and source are not FCG-unifiable,
the source feature value is minimally extended so that its extension and the
pattern are unifiable. The source feature value is extended only if this can be
done without introducing inconsistencies. Consider the following example:

p: ((Punit (sem-cat (== (agent 7e 7a) (entity-type 7a human)))))
s: {(unit (sem-cat {(agent e a) (event-type e motion)}))}

The values of the feature sem-cat are not unifiable. But if we add the fact
(entity-type 7a human) to the source value, both feature values can be unified
yielding the following extended value, which is the result of merging s with p.
s’: {(unit (sem-cat {(agent e a) (event-type e motion)

(entity-type a human)l}))}

The steps involved in merging the feature value in source structure s with
the feature value in pattern structure p above are:

1. Finding a minimal subset p. = {(entity-type 7a human)} of p such that
sUpe and p are FCG-unifiable, and an FCG-unifier o of p and s pe.
2. Applying 0 = {7a = a,% = e} to s|Jp. in order to obtain the extended

source feature value (s|Jp.)o, which is the result of merging s with p.

In general the result of merging a source feature value s with a pattern feature
value p is not unique, because there might be different minimal extensions s’ of s
such that s’ and p are unifiable; and there might be as well different FCG-unifiers
for a given extension s’ and the pattern p.

3 In this case, the source feature value is not extended as a result of merging it with
the pattern feature value, although some of its variables might be instantiated when
an FCG-unifier of both feature values is applied to it.

6 J. Sierra Santibanez

The Set of Facts Consistency Condition The first step above requires
further clarification. Let us consider another example, where s and p denote the
source and pattern structures to be merged respectively.

p: ((Punit (form (== (string ?7unit car)))

(syn-cat (== (number 7unit singular)))))
s: {(unit (form {(string unit cars)})

(syn-cat {(number unit plural)}))}

In this case, s should not be merged with p, because neither the values of the
form feature nor those of the syn-cat feature are consistent with each other.
The value of the source feature syn-cat and the value of the same feature
in the pattern are not unifiable. But the union of the minimal subset of the
pattern feature value p. = {(number ?unit singular)} and the source feature
value s = {(number unit plural)} leads to a contradiction, once the most general
unifier ¢ = {?unit = unit} is applied to it: the number of a unit cannot be
singular and plural at the same time.

(sUpc)o = (syn-cat {(number unit plural) (number unit singular)})

In fact, the pattern and source structures above cannot be merged. The
minimal subset of the pattern feature value p. such that s|Jp. and p are
FCG-unifiable must satisfy an additional condition which we will call the set
of facts consistency: the extended source feature value resulting from merging
the source with the pattern should not contain any pair of facts (f a1 ...a, u)
and (f ay...a, v) such that their elements are all equal but for the last one
(u # v). The reason for imposing this condition is that a function cannot assign
different values to a single tuple of elements, and we are assuming that a fact
described by a list such as (f ai...a, v) represents a statement of the form
f(a1,...,a,) = v, where f denotes a function symbol, aq,...,a, its arguments,
and v the value that f assigns to (a1,...,an).

In FCG the symbol =1 is used in pattern feature values of type set of terms to
indicate that no repetitions are allowed. For example, the pattern of the previous
example should be specified as follows in FCG:

p: ((Punit (form (=1 (string ?7unit car)))
(syn-cat (=1 (number 7unit singular)))))

We need not use =1, because we assume a functional interpretation of lists
representing facts and the set of facts consistency condition. The reader should
be warned that lists representing facts in FCG are interpreted relationally and
that FCG does not make the set of facts consistency assumption.

Feature-value Merge Let s be a source feature value of type set of terms, p a
pattern feature value of the same type, p. a minimal subset of p such that s|Jp.
and p are FCG-unifiable?, and ¢ an FCG-unifier of s|Jp. and p. If (s{Upc)o

4 A subset p. of a pattern feature-value p is minimal with respect to a source feature-
value s if no subset p; of p satisfies that: (1) p+ C pe; (2) p and s|Jp: are FCG-
unifiable; and (3) (s|Jp:)o is fact set consistent.

A Logic Programming Approach to Parsing and Production in FCG

satisfies the set of facts consistency condition, then the extended feature value
(s Upe)o is a valid result of merging s with p.

3.3 Unification and Merge for Units

Let p = (Pname (f1 1) (f2 u2) (fs u3) (fsa u4)) be a pattern unit, where
fi1,..., f4 are the feature names sem-subunits, referent, meaning and sem-cat,
if p is a semantic unit; or the feature names syn-subunits, utterance, form and
syn-cat, if p is a syntactic unit.

Unit Arrangement A p-arrangement of a source unit s is a first order logic term
of the form (spame (f1 1) (f2 v2) (f3 U3) (f404)), where Spame is the name of s;
ni,n3 and ny are the number of elements in @, a3 and uy4; U1, U3, U4 are ni,ns
and ng4-arrangements of the values of features f1, f3 and f; in s, respectively;
and vy is the value of feature fs in s.

A p-arrangement of a source unit s is thus a unit obtained from s substituting
each of its feature values for arrangements of such feature values with respect to
the corresponding feature values in the pattern unit p.

Unit Unification Let p be a pattern unit and s a source unit. We say that s and
p are FCG-unifiable if there is a p-arrangement s’ of s such that the first order
logic terms p and s’ are unifiable. The most general unifier o of s’ and p is an
FCG-unifier of s and p.

Unit Merge Let s be a source unit (Spame (f1 sv1) (f2 sv2) (f3 svs) (fa4 sv4));
p a pattern unit (pname (f1 pv1) (f2 pv2) (f3 pvs) (fa pva)); pvf,pv§ and
pv{ minimal subsets of pvy,pvs and pvy such that the extended unit s¢ =
(Sname (f1 svrUpvf) (fo sv2) (fs svsUpvs) (fa svalUpvf)) and the pat-
tern unit p are FCG-unifiable; and o an FCG-unifier of s¢ and p. If every feature
value in s®c satisfies the set of facts consistency condition, then s®o is a valid
result of merging s with p.

3.4 Unification and Merge for Structures

Structure arrangement Let s = {uy ... un} be a source structure and p = (==
V1...Un) a pattern structure. An m-arrangement of s is a list of m-units s’ =

v Vi vj .)) .
(ugl,...,ui™), where each u;’ is a vj-arrangement of some u;; € sforj =1...m,
and the u;, are all distinct.

Structure Unification Let s = {uy...un} be a source structure and p = (==
V1 ...Un) a pattern structure. We say that s and p are FCG-unifiable if there
is an m-arrangement s’ of s such that the first order logic terms s’ and p are
unifiable. The most general unifier o of s’ and p is an FCG-unifier of s and p.

8 J. Sierra Santibanez

Structure Merge Let s be a source structure; p a pattern structure (== vy .. .vm);
p. & minimal subset of p such that for each unit u; € s{Jp. ¢ = 1...n there
is a unit u«§ which is either equal to u; or an extension of u; with respect to
a unique unit v; € p, such that the extended structure s¢ = {uf,...,u%} and
the pattern structure p are FCG-unifiable; and o an FCG-unifier of s¢ and p.
If every feature-value in s®o satisfies the set of facts consistency condition, then
s¢o is a valid result of merging s with p.

4 Examples of Construction Application

The semantic and syntactic source structures constructed at an intermediate
stage during the parsing process of the sentence John slides blocks to Mary are
shown in figure 1. These structures result from applying morphological, lexical,
semantic categorisation and phrase structure rules (constructions) to an initial
structure containing just the words that make up the sentence. Morphological
rules decompose words into a stem and a set of syntactic categories (e.g. "slides"
into a stem "slide" and the categories verb and singular). Number is grammatical
as opposed to natural, because it does not contribute to meaning. Lezical rules
map the stem of a lexical item into a set of facts specifying its meaning, and
natural syntactic categories (e.g. number for nouns) into additional meaning.
Semantic categorisation rules add semantic categories to the semantic structure
(e.g. the arguments of "slide" can be mapped into the semantic roles agent,
object and recipient in a transfer-to-recipient (tr) event). Finally, phrase structure
rules relate structural properties of a sentence, such as word order, to syntactic
categories, such as subject, direct object or indirect object.

Note that the variables associated with the referents of semantic units jo,
bl and ma, which represent John, blocks and Mary respectively, are different
from those associated with the roles in the transfer-to-recipient event in unit sl.
Figure 2 shows an example of a construction whose purpose is to ensure that the
variables associated with the roles agent, object and recipient (ag, obj and rec
in unit %eu) in a transfer-to-recipient (tr) event in a semantic structure become
equal to the variables associated with the referents of semantic units ?au, 7ou
and 7ru, which represent the participants in such an event.

Let us see how the construction shown in figure 2 can be applied to the
syntactic and semantic structures associated with the sentence John slides blocks
to Mary, in order to make the variables representing the roles in the transfer-to-
recipient event equal to those associated with the referents of the units for John,
blocks and Mary.

From a computational point of view, construction application is a combi-
nation of two operations: unification and merge. Unification is used to check
whether a construction is compatible with a source structure; and merge to ex-
tend the structure with information contained in the construction.

In our example unification is first applied to the syntactic pattern of the
construction and the syntactic source structure, to determine whether the con-
struction can be used to extend the structure. In this case both structures are

A Logic Programming Approach to Parsing and Production in FCG

unifiable. Then the unifier built during this process {?su=u, ?eu=sl, ?au=jo,
7tu=t, Tou=Dbl, ?ru=ma} is applied to the semantic pattern of the construction
and the semantic source structure. Next, the semantic source structure is merged
with the semantic pattern of the construction.

If the semantic source structure and the pattern are unifiable, merge is equiv-
alent to applying one of their FCG-unifiers to the semantic source structure. In
our example they are unifiable. Therefore the result of merging the semantic
source structure with the semantic pattern is obtained applying the unifier 7 =
{7s="7e, 7j="a, Tb="70, Tm="7r} to the semantic structure. As a consequence of
this, the variables associated with the roles agent, object and recipient in the
transfer to recipient event become equal to those associated with the referents
of the units representing John, blocks and Mary in the semantic structure.

{(u (sem-sub {sl jo bl ma})) {(u (syn-sub {sl jo bl t ma})
(form {(order u (jo sl bl t ma))})
(syn-cat {SVOtoO-sentence}))
(sl (referent 7s) (sl (form {(string sl slides)})
(meaning {(act ?s slide) (argl ?s 7a) (syn-cat {(stem sl slide)
(arg2 7s 7o) (arg3 7s 7r)}) (numb gram sl singular)
(sem-cat {(ev-type ?s tr) (ag 7s ?a) (speech-part sl verb)
(obj ?s 70) (rec 7s 7r)})) (role sl pred)}))
(t (form {(string t to)})
(syn-cat {(speech-part t prep)}))
(jo (referent 7j) (jo (form {(string jo John)})
(meaning {(entity-type 7j person) (syn-cat {(stem jo john),
(count ?j one)})) (numb nat jo singular)
(speech-part jo noun))
(role jo subject)}))
(bl (referent ?b) (bl (form {(string bl blocks)})
(meaning {(entity-type ?b block) (syn-cat {(stem bl block)
(count ?b several)})) (numb nat bl plural)
(speech-part bl noun))
(role bl dir-obj)}))
(ma (referent 7m) (ma (form {(string ma Mary)})
(meaning {(entity-type ?m person) (syn-cat {(stem ma mary)
(count ?m one)})) } (numb nat ma singular)
(speech-part ma noun)
(role ma ind-obj)})) }

Fig. 1. Semantic (left) and syntactic (right) source structures built at an intermediate
stage during the parsing process of the sentence John slides blocks to Mary.

(?su (sem-sub (= 7eu 7au Zou ?7ru)))

(?eu (referent
(sem-cat

7e)

(= (ev-type 7e tr) (ag 7e 7a)
(obj ?e ?0) (rec e 7r))))

(?au (referent ?a))

(?ou (referent 7o0))

(?ru (referent 7?r)))

(?su (syn-sub (= 7eu 7au ?tu 7ou ?ru))
(syn-cat (= SVOtoO-sentence)))
(?eu (syn-cat (= (role 7eu pred))))

(?tu (form (= (string ?tu to))))

(?au (syn-cat (= (role 7au subject))))
(?ou (syn-cat (= (role ?ou dir-obj))))
(?ru (syn-cat (= (role ?ru ind-obj))))

)

Fig. 2. Construction which associates a transfer-to-recipient (tr) semantic pattern
structure (left) with a Subject + Verb + Dir-Object + to + Indir-Object (SVOtoO)
syntactic pattern structure (right). Features whose values are the empty set or vari-
ables which appear only once in the construction are omitted.

10 J. Sierra Santibanez

However, unifiability is not a necessary requirement for merge. If source and
pattern are not unifiable, the source structure might still be merged with the
pattern, provided it can be minimally extended so that its extension and the
pattern are unifiable, and the result of merge does not violate the set of facts
consistency condition.

Let us see an example of construction application where merge cannot be
reduced to unification. Figure 3 shows a morphological construction which de-
composes the word "slides" into a stem and a number of syntactic categories.
We apply this construction to the source structure in figure 4. First, unification
is applied to the left pattern of the construction and the source structure (see
figure 5), to determine whether the construction can be used to extend the struc-
ture. Then the unifier o constructed during this process is applied to the right
pattern of the construction and the source structure.

(= (?s (form (= (string 7?s slides))))) (= (?s (form (= (stem 7s slide)))
(syn-cat (= (number ?s singular)
(speech-part ?s verb)))))
Fig. 3. Construction which decomposes the word "slides" into a stem and a number of
syntactic categories.

{ (sl (syn-sub {})
(utter 7u2)
(form {(string sl slides)})
(syn-cat ?sc2)) }

Fig. 4. Extended form of a syntactic source structure containing a syntactic unit asso-
ciated with the word "slides" at an initial stage during the parsing process.

(= (7s (syn-sub {}) { (sl (syn-sub {})
(utter 7ul) (utter 7u2)
(form (= (string 7s slides))) (form {(string sl slides)})
(syn-cat 7?scl))) (syn-cat 7sc2)) }

Fig. 5. Unification is applied to the left pattern of the construction and the source
structure, yielding the unifier o = {?s = sl, 7ul = 7u2, ?scl = ?sc2}.

Next, the source structure is merged with the right pattern of the construc-
tion. Given that the pattern and the source structure are not unifiable, the source
structure is minimally extended so that its extension and the pattern are unifi-
able. In particular, the value of feature form in the source structure is extended
with the subset {(stem sl slide)} of the value of the same feature in the pattern
(see figure 6).

Finally, the extended source structure and the right pattern of the construc-
tion are unified, and the unifier 7 = {?sc2 = {(number sl singular) (speech-part
sl verb)}} constructed during this step is applied to the extended source struc-
ture in order to obtain the result of merging the source structure with the right
pattern of the construction (see figure 7).

A Logic Programming Approach to Parsing and Production in FCG

{ (sl (syn-sub {}) (= (sl (syn-sub {})
(utter 7u2) (utter 7u2)
(form {(string sl slides) (form (= (stem sl slide)))
(stem sl slide)})
(syn-cat ?sc2)) } (syn-cat (= (number sl singular)

(speech-part sl verb)))))

Fig. 6. Unifier ¢ is applied to the right pattern of the construction, and the source
structure is minimally extended so that it unifies with the pattern in the sense of FCG.

{ (s (syn-sub {})

(utter 7u2)

(form {(string sl slides) (stem sl slide)})

(syn-cat {(number sl singular) (speech-part sl verb)})) }
Fig. 7. Result of merging the source structure with the instantiated right pattern of
the construction.

5 Outline of an FCG-Unification Algorithm

Let p = (== v1...v,) be a pattern structure and s = {uy...u,} a source
structure. For each unit v; in p we define the set C; = {(uf, O';—C) li=1...n, k=
k

1...n;}, where uj is a v;-arrangement of unit u; in s such that u? and v; are

unifiable in the sense of First Order Logic and 0;? = mgu(v;, uf)

For example, let p = (== wv1...v5) be the syntactic pattern structure in
figure 2 and s = {uy ... ug} the syntactic source structure in figure 1. In order
to construct Co, we first try to unify unit vy (i.e. 7eu) in the pattern and unit uy
(i.e. u) in the source. Units in figures 1 and 2 appear in abbreviated form, where
features which do not contain relevant values are omitted. Unification requires

using the extended form of these units, which is shown below.

(?eu (syn-sub ()) (u (syn-sub {sl jo bl t ma})
(utter 7ul) (utter ?u2)
(form 7f (form {(order u (jo sl bl t ma))})
(syn-cat (= (role 7eu pred)))) (syn-cat {SVOtoO-sentence}))

In order to unify two units, it is necessary to unify their feature values, and
it is clear that the values of feature syn-cat are not FCG-unifiable: there is no
l-arrangement of {SVOtoO-sentence} which can be made equal to ((role 7eu
pre)). Therefore units vo and u; are not unifiable.

We consider now the pair of units vy (i.e. 7eu in the pattern) and ug (sl in
the source). The extended form of these units is shown below.

(?eu (syn-sub ()) (sl (syn-sub {})
(utter 7ul) (utter 7u2)
(form 7f) (form {(string sl slides)})
(syn-cat (= (role ?eu pred)))) (syn-cat {(stem sl slide)

(numb gram sl singular)
(speech-part sl verb)
(role sl pred)}))
The values of features syn-sub, utter and form in units sl and ?eu are unifiable.
The value of feature syn-cat has four 1-arrangements, however only one of them,

11

12 J. Sierra Santibanez

((role sl pred)), satisfies the unifiability condition. It is easy to check that unit
?eu does not unify with the rest of the units in the source structure. Therefore,
set Cy consists only of the pair (u},o3), where o3 is the unifier {?eu = sl, 7ul
= 72, ?f = ((string sl slides))} and ud the ?eu-arrangement of unit uy (i.e. sl)
shown below.

(?eu (syn-sub ()) (sl (syn-sub ())
(utter 7ul) (utter 7u2)
(form 7f) (form ((string sl slides)))
(syn-cat (= (role 7eu pred)))) (syn-cat ((role sl pred))))

The same reasoning can be applied to units vs, v4, v5 and vg (i.e. Ttu, ?au, Tou
and ?7ru) in the pattern. Only one arrangement of unit ug (i.e. t) and unit vs (i.e.
?tu) are unifiable, and the same happens to the pairs of units (?au, jo), (Tou, bl)
and (?ru,ma).

Unit vy (i.e. 7su) is more interesting though, because several v;-arrangements
of source unit u; (i.e. u) satisfy the unifiability condition. In fact, the set Cy con-
tains 120 pairs of the form (vj-arrangement, unifier), one for each permutation
of the set {sl jo bl t ma}. We just show two of them.

The unifier o1 = {?su = u, ?eu = sl, 7au = jo, 7tu = t, 7ou = bl, 7ru = ma, 7ul
= ?u2, ?f = ((order u (jo sl bl t ma)))} corresponds to ui, the ?su-arrangement
of unit u; (i.e. u) shown below.

(?su (syn-sub (= 7eu ?au ?tu ?ou ?ru)) (u (syn-sub (sl jo t bl ma))
(utter 7ul) (utter 7u2)
(form 7f) (form ((order u (jo sl bl t ma))))
(syn-cat (= SVOtoO-sentence))) (syn-cat (SVOtoO-sentence)))

The unifier 02 = {?su = u, ?eu = sl, 7au = jo, 7tu = t, 7ou = ma, ?ru = bl, 7ul
= ?u2, ?f = ((order u (jo sl bl t ma)))} corresponds to u?, the ?su-arrangement
of unit u; (i.e. u) shown below.

(?su (syn-sub (= 7eu ?au ?tu ?ou ?ru)) (u (syn-sub (sl jo t ma bl))
(utter 7ul) (utter 7u2)
(form 7f) (form ((order u (jo sl bl t ma))))
(syn-cat (= SVOtoO-sentence))) (syn-cat (SVOtoO-sentence)))
Given a pattern structure p = (== v1...vp,), a source structure s = { uz

. u, } and a tuple of sets (C1,...,Cyy,) of the sort defined above, the set of
FCG-unifiers of p and s can be defined as follows.

{0 Fi1... Fip(a €CLA...ANaim € Oy Ao =mgu(p, (i, ... alm))}

That is, the set of FCG-unifiers of p and s is the set of most general unifiers
of p and ', where s’ is any p-arrangement of s of the form (a}',...,alm) such
that s’ and p are unifiable.

Clearly, constructing all the p-arrangements of a source structure s, and
checking whether p and any of them are unifiable is not a practical approach
to unification. Consider the unification example discussed above. Sets Cs to Cg
contain a single pair of the form (arrangement, unifier), but set C; has 120

A Logic Programming Approach to Parsing and Production in FCG

pairs. Therefore, in the worst case we would have to construct 120 structure
arrangements and check whether each of them and the pattern are unifiable.

Instead, we use a heuristic depth first search strategy to explore the space
of structure arrangements. The depth first search part of our approach con-
sists in applying the unifier associated with a unit arrangement in a set C; to
the whole pattern and source structures. This requires undoing substitutions in
backtracking steps, but it can be easily implemented in Prolog. The heuristic
part is used to determine the order in which the sets C; will be used to explore
the set of structure arrangements. For example, if set C; has fewer elements than
set C}, then we instantiate the i-esim component of an arrangement earlier than
the j-esim one. Similarly, semantic relevance is used as a criterion for determin-
ing order of instantiation. For example a unit representing the predicate of a
sentence should take precedence over other units representing its subject or its
complements. Figure 8 shows part of a preliminary Prolog implementation of
the FCG-unification algorithm outlined in this section.

Let us illustrate these ideas describing the application of the algorithm to
our previous example of unification of the syntactic pattern of the construction
in figure 2 and the syntactic source structure in figure 1. In accordance with the
heuristics just mentioned the unit-arrangement and unifier in set Cy would be
used in first place, because unit us describes a predicate and the set Cy only
has one element. Sets C5 to Cs also have one element. They might be explored
in order of semantic relevance: C; subject, Cx direct object, Cg indirect object
and C3 preposition. Finally, the last set to be used would be C4, because it has
120 elements. In fact, as we will see later, set C; will not even be constructed
explicitly. All its arrangements but one will be pruned out by unification during
the depth first search process. It is possible to estimate the number of elements
of a set C; without actually computing it®. Therefore, we need not assume that
the sets C; must be computed before starting the depth first search process.

First, unification is applied to units vy and us, the vo-arrangement ul and
unifier o} in Cy are used as follows: unit uy (i.e. sl) in the source is substituted
for arrangement u3, and unifier 0§ = { ?eu = sl, 7u3 = 7u4, 72 = ((string sl
slides)) } is applied to the construction and the source structure (see figure 9).

Next, sets C; = {(u},0})},i=4,5,6,3 are used in that order: unit u; in the
source is substituted for arrangement u}, and unifier o} is applied to the pattern
and the source structures. The result is shown in figure 10.

As we said before, once variables 7eu, 7au, ?ou, Ttu and 7ru have been
instantiated during the heuristic depth first search process (see figure 10), the
set C of arrangements of units in the source structure which can be made equal
to unit vy consists of a single element rather than 120. That is, C; = {(ui, 1)},

5 This is clear in the case of C1, because the value of feature syn-sub in unit ?su is
a set consisting of five variables, therefore all the permutations of such a set unify
with the value of the same feature in unit u. For the rest of the units one can simply
check whether their single element in feature syn-cat belongs to the value of the same
feature in each of the units in the source structure.

13

14 J. Sierra Santibanez

% fv_unif(P,S,A)

% P a pattern feature-value and S a source feature-value. If P and S
% are FCG-unifiable this predicate succeeds and A is instantiated to
% Ps, S’ is a P-arrangement of S unifiable with P and s = mgu(P,S’).

% unit_unif (P,S,A)

% P a pattern unit and S a source unit. If P and S are FCG-unifiable
% this predicate succeeds and A is instantiated to Ps, where S’ is a
% P-arrangement of S unifiable with P and s = mgu(P,S’).

% str_unif(P,S,A)

% P a pattern structure and S a source structre. If P and S are

% FCG-unifiable this predicate succeeds and A is instantiated to
% Ps, S’ is a P-arrangement of S unifiable with P and s=mgu(P,S’).

str_unif (P,S,A) :- sort_heur(P,S,SP), str_arrang(SP,S,A).

st_arr([],_,[1).
st_arr([HI|T],S, [AH|R]) :- member(U,S), unit_unif(H,U,AH),
delete(S,U,Rest), st_arr(T,Rest,R).

sort_heur(P,S,SP)

P is a pattern structure and S a source structure.

This procedure instantiates SP to a list containing the units in

P sorted in accordance with the heuristics used by the algortihm.
Units in P which should be instatiated in first place are charac-
terised as ’good’ with respect to the source structure S, and are
placed in the front of SP. A predicate better is used to indicate
that a unit ul should be instantiated earlier than another u2, i.e.
that ul should precede u2 in SP. The following rules describe some
heuristics used by the FCG-unification algorithm.

S S 5 52 32 3 ;e e e

good(U,S) :- unique_unifier(U,S).

better(U1,U2,S) :- more_unifiers(U2,U1,S), !.
better(U1,U2,S) :- \+ better(U2,U1,S), predicate_unit(U1),
\+ predicate_unit(U2), !.
% similar rules for subject, direct object, indirect object...

Fig. 8. Partial description of the Prolog code of the FCG-unification algorithm (\+
denotes negation by failure).

A Logic Programming Approach to Parsing and Production in FCG

(= (?su (syn-sub (= sl 7au ?tu ?ou ?ru)) [{(u (syn-sub {sl jo bl t ma})
(utter 7ul) (utter 7u2)
(form 7f1) (form {(order u (jo sl bl t ma))})
(syn-cat (= (SVOtoO-sentence))) (syn-cat {SVOtoO-sentence}))
(sl (syn-sub ()) (sl (syn-sub {})
(utter 7u4) (utter 7u4)
(form ((string sl slides))) (form ((string sl slides)))
(syn-cat (= (role sl pred)))) (syn-cat ((role sl pred))))
(7tu (syn-sub ()) (t (syn-sub {})
(utter 7ub) (utter 7ub)
(form (= (string ?tu to))) (form {(string t to)})
(syn-cat ?sl) (syn-cat {(speech-part t prep)}))
(?au (syn-sub ()) (jo (syn-sub {})
(utter ?u7) (utter ?u)
(form 7f3) (form {(string jo John)})
(syn-cat (= (role 7au subject)))) (syn-cat {(stem jo john)
(numb nat jo singular)
(speech-part jo noun)
(role jo subject)}))
(7ou (syn-sub ()) (bl (syn-sub {})
(utter ?u9) (utter ?ul0)
(form 7f4) (form {(string bl blocks)})
(syn-cat (= (role 7ou dir-obj)))) (syn-cat {(stem bl block)
(numb nat bl plural)
(speech-part bl noun)
(role bl dir-obj)}))
(?ru (syn-sub ()) (ma (syn-sub {})
(utter 7ull) (utter 7ul2)
(form 7£5) (form {(string ma Mary)})
(syn-cat (= (role ?ru ind-obj)))) (syn-cat {(stem ma mary)

(numb nat ma plural)
(speech-part ma noun)
(role ma ind-obj)})) }

Fig.9. C2 = {(u3,03)} is used in first place: unit up in the source is substituted for
arrangement u3, and unifier o3 is applied to pattern and source.

(= (?su (syn-sub (= sl jo t bl ma))
(utter 7ul)
(form 7f1)

(syn-cat (= (SVOtoO-sentence)))

{(u

(syn-sub {sl jo bl t ma})

(utter 7u2)

(form {(order u (jo sl bl t ma))})
(syn-cat {SVOtoO-sentence}))

(sl (syn-sub ()) (sl (syn-sub ())
(utter 7u4) (utter 7u4)
(form ((string sl slides))) (form ((string sl slides)))
(syn-cat ((role sl pred)))) (syn-cat ((role sl pred))))
(t (syn-sub ()) (t (syn-sub ())
(utter 7u6) (utter 7u6)
(form ((string t to))) (form ((string t to)))
(syn-cat ((speech-part t prep)))) (syn-cat ((speech-part t prep))))
(jo (syn-sub ()) (jo (syn-sub ()
(utter 7u8) (utter 7u8)
(form ((string jo John))) (form ((string jo John)))
(syn-cat ((role jo subject)))) (syn-cat ((role jo subject))))
(bl (syn-sub ()) (bl (syn-sub ())
(utter 7ulo) (utter ?ul0)
(form ((string bl blocks))) (form ((string bl blocks)))
(syn-cat ((role bl dir-obj)))) (syn-cat ((role bl dir-obj))))
(ma (syn-sub ()) (ma (syn-sub ())
(utter ?ul2) (utter ?ul2)
(form ((string ma Mary))) (form ((string ma Mary)))
(syn-cat ((role ma ind-obj))))) (syn-cat ((role ma ind-obj))))}

Fig. 10. Result of using the arrangements and unifiers in sets C4, C5, Cs and Cs in
that order to explore the space of structure arrangements.

15

16 J. Sierra Santibanez

where unifier o] is {?su = u, 7ul = ?u2, ?fl = ((order u (jo sl bl to ma)))} and
arrangement u? is as follows.

(u (syn-sub (sl jo t bl ma))
(utter 7u2)
(form ((order u (jo sl bl t ma))))
(syn-cat (SVOtoO-sentence)))

The result of using the arrangement and unifier in C7, that is of substituting
unit u; in the source structure for arrangement ui, and applying unifier o1 to
the source structure, is a complete arrangement s’ of source structure s which
satisfies the unifiability condition.

The heuristic depth first search process described above has allowed us to
check that the syntactic pattern of the construction and the syntactic source
structure are unifiable. The unifier built during this process can be stored for
later use. But in order to implement construction application, we apply the
substitutions of previous steps not only to the syntactic source structure and the
syntactic pattern of the construction, but also to the semantic source structure
and the semantic pattern of the construction (see figure 11).

(= (u (sem-sub (= sl jo bl ma)) {(u
(referent 7rl) referent 72)
(meaning ?ml) meaning ?m2)

(sem-sub {sl jo bl ma})
(
(sem-cat ?scl)) Escm-cat ?sc2))
(
(
(

(sl (sem-sub ()) (sl (sem-sub {})

(referent 7e) referent 7s)

(meaning ?m3) meaning {(act ?s slide) (argl ?s 7a)
(arg2 ?s 70) (arg3 7s 7r)})

(sem-cat (= (ev-type 7e tr) (ag 7e 7a) (sem-cat {(ev-type ?s tr) (ag 7s 7a)
(obj ?e 70) (rec ?e 7r)))) (obj ?s ?0) (rec ?s ?r))})
(jo (sem-sub ()) (jo (sem-sub {})
(referent 7a) (referent 7j)
(meaning 7m4) (meaning {(entity-type ?j person)

(count ?j one)})
sem-cat 7sc8))
sem-sub {})
referent ?b)
meaning {(entity-type ?b block)
(count 7b several)})
(sem-cat ?7sc9)) (sem-cat ?scl0))
(ma (sem-sub ()) (ma (sem-sub {})
(
(

(sem-cat ?sc7))
(bl (sem-sub ()) (bl

(referent 70)

(meaning 7m5)

~~—=

(referent 7r) referent 7m)

(meaning ?m6) meaning {(entity-type ?m person)
(count ?m one)})
(sem-cat ?scll))) (sem-cat 7scl2))}

Fig. 11. Result of applying the unifiers constructed during the heuristic depth first
search process to the semantic pattern of the construction (left) and the semantic
source structure (right).

As we explained before, construction application consists of two steps. First,
the syntactic pattern of the construction and the syntactic source structure are
unified. Then the instantiated semantic source structure is merged with the se-
mantic pattern of the construction. In this example, the semantic source struc-
ture and the pattern are unifiable, therefore merge is equivalent to applying one
of their unifiers to the semantic source structure.

A Logic Programming Approach to Parsing and Production in FCG

The result of unifying the instantiated semantic source structure and the
instantiated semantic pattern is substitution 7 = { ?rl = 712, 7ml = ?m2, ?scl
= 7sc2, 7e = 7s, "Tm3 = ((act 7s slide) (argl ?s 7a) (arg2 ?s 7o) (arg3 ?s 7r)),
7a = 7j, Tm4 = ((entity-type ?j person) (count ?j one)), ?sc7 = 7sc8, 70 =
?b, 7mb = ((entity-type ?b block) (count 7b several)), ?sc9 = ?scl0, ?r = 7m,
?m6 = ((entity-type ?m person) (count ?m one)), ?scll = ?sc12 }, which makes
variables 75, 7b and ?7m, associated with the referents of units jo, bl and ma in
the semantic source structure, equal to variables 7a, 7o and 7r, associated with
the roles in the transfer to recipient event (t¢r) in that structure.

6 Conclusions

This paper has presented a logic programming approach to parsing and produc-
tion in Fluid Construction Grammar (FCG). It builds on previous work on the
formalisation of the unification and merge operations used in FCG in terms of
First Order Logic (FOL) unification and search in the space of a particular set
of FOL terms called structure arrangements.

Its main contribution is to outline a method for implementing unification and
merge based on Logic Programming and Artificial Intelligence techniques such
as unification and heuristic search. The formulation of the unification and merge
problems in FCG as heuristic search problems in the space of structure arrange-
ments not only allows understanding the problems of parsing and production
with constructions in FCG as deduction problems, but also opens the door to
the application of efficient automated deduction techniques to these problems.

Acknowledgements

Partially supported by BASMATI MICINN project (TIN2011-27479-C04-03)
and by SGR2009-1428 (LARCA). I would like to thank Luc Steels and Joachim
De Beule for valuable comments on an earlier version of this paper.

Bibliography

[1] Bleys, J., Stadler, K., De Beule, J.: Search in linguistic processing. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[2] Ciortiuz, L., Saveluc, V.: Fluid Construction Grammar and Feature Con-
straints Logics. In: Steels, L. (ed.) Computational Issues in Fluid Construc-
tion Grammar. Springer Verlag, Berlin (2012)

[3] Goldberg, A.: A Construction Grammar Approach to Argument Structure.
Univ Chicago Press (1995)

[4] Harnad, S.: The symbol grounding problem. Physica D 42, 335-346 (1990)

[6] Langacker, R.: Foundations of Cognitive Grammar. Stanford Univ Press
(1991)

17

18
[6]
7

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Sierra Santibanez

McCarthy, J.: Recursive functions of symbolic expressions and their com-
putation by machine. Communications of the ACM 3(4), 184-195 (1960)
McCarthy, J.: Formalizing Common Sense. Papers by John McCarthy.
Ablex. Ed. V. Lifschitz (1990)

Sierra-Santibanez, J.: First order logic concepts in Fluid Construction
Grammar. In: Biologically Inspired Cognitive Architectures 2011. pp. 344—
350. IOS Press (2011)

Steels, L.: The synthetic modeling of language origins. Evolution of Com-
munication 1(1), 1-35 (1997)

Steels, L.: Constructivist development of grounded construction grammars.
In: Proceedings of the Annual Meeting of the Association for Computational
Linguistics Conference. pp. 9-19 (2004)

Steels, L.: Evolution of Communication and Language in Embodied Agents,
chap. Modeling the Formation of Language: Embodied Experiments, pp.
235-262. Springer (2010)

Steels, L., Beule, J.D.: Unify and merge in Fluid Construction Grammar. In:
3rd International Workshop on the Emergence and Evolution of Linguistic
Communication. pp. 197-223. LNAT 4211, Springer (2006)

Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

Steels, L.: Design methods for Fluid Construction Grammar. In: Steels,
L. (ed.) Computational Issues in Fluid Construction Grammar. Springer
Verlag, Berlin (2012)

Steels, L. (ed.): Experiments in Cultural Language Evolution. John Ben-
jamins, Amsterdam (2012)

Tomasello, M., Brooks, P.: The Development of Language, chap. Early syn-
tactic development: A Construction Grammar approach, pp. 161-190. Psy-
chology Press (1999)

van Trijp, R.: A reflective architecture for language processing and learning.
In: Steels, L. (ed.) Computational Issues in Fluid Construction Grammar.
Springer Verlag, Berlin (2012)

Wittgenstein, L.: Philosophical Investigations. Macmillan, New York (1953)

