Notice

This paper is the author’s draft and has now been published officially as:

Stadler, Kevin (2012). Chunking Constructions. In Luc Steels (Ed.), Computa-
tional Issues in Fluid Construction Grammar, 75-88. Berlin: Springer.

BibTeX:

@incollection{stadler2012chunking,
Author = {Stadler, Kevin},
Title = {Chunking Constructions},
Pages = {75--88},
Editor = {Steels, Luc},
Booktitle = {Computational Issues in {Fluid Construction Grammar}},
Publisher = {Springer},
Series = {Lecture Notes in Computer Sciencel,
Volume = {7249},
Address = {Berlin},
Year = {2012}}

Chunking Constructions

Kevin Stadler

Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Belgium

Abstract. Compositionality is a core property of human languages that
sets them apart from other communication systems found in the animal
world. But psycholinguistic evidence indicates that humans do not al-
ways decompose complex expressions in language processing. Redundant
representations of compositional structure appear to be necessary to ac-
count for human linguistic capacities, a fact that should be reflected in
any realistic language processing framework. This chapter presents an
algorithm for dynamically combining multiple constructions into a sin-
gle chunk in Fluid Construction Grammar. We further investigate where
cases of spontaneous combinations of productive constructions occur in
natural language, and discuss the relevance of redundant representations
for experiments on artificial language evolution.

1 Introduction

Compositionality is one of the defining properties of human languages. Being
able to use productive rules to combine words into complex expressions gives rise
to the uniquely human capacity to easily communicate previously unexpressed
meanings. Consequently, it is these compositional rules which have been at the
center of investigations in mainstream linguistic theory for the last few decades,
with idiosyncratic properties of particular expressions or lexical items pushed to
the periphery of linguistic theory.

But psycholinguistic evidence indicates that humans make use of a significant
amount of direct access to compositional structures, even for perfectly productive
and transparent combinations which would be analysed as compositional by
a linguist [9]. This intriguing finding, which is at odds with the very formal
and fully generalising dogma of generative grammar [8], has sparked interest
in the question of what the productive units of language really are, and why.
Computational models have helped address this question, with grammar learning
reframed as a problem of finding the optimal encoding balance between storage
and computation (i.e. a tradeoff between machine-level resources [23]), or the
ability to predict future novelty versus future reuse in order to best account for
the linguistic data observed [11].

What these models still share with the generative paradigm is their reduc-
tive stance in linguistic description, also coined the “rule/list fallacy” [7] — the
assumption that any kind of linguistic knowledge would have to be either stored
in an autonomous lexical entry or be derived productively via rule, but not
both. In a usage-based account on the other hand, knowledge about particular

Chunking Constructions 3

instances is never generalised away, specific experiences are stored while at the
same time giving rise to more general, productive patterns [1]. Formal and com-
putational models of language should therefore not only require the possibility
of having multiple representations to account for the same compositional struc-
tures [10], but consequently also a theory and mechanisms which can efficiently
handle and make use of these ‘redundancies’.

In cognitive linguistics, this need for multiple representations has been coun-
tered by approaches such as Construction Grammar [5]. Their uniform represen-
tation of linguistic knowledge signifies not only that the boundary between pure
lexical entries and compositional rules (such as grammatical constructions) is
gradual rather than abrupt. The fact that all linguistic items — lexical, idiomatic
and syntactic — are stored and retrieved from the same linguistic inventory, the
constructicon, also lends itself to the idea of co-maintaining representations of
the same structure at many different levels of abstraction.

What characterises these multiple representations is that they are not a static
immutable representation of our language capacity but that they can be derived
and updated dynamically. During interactive dialogue, for example, humans ex-
hibit a strong tendency for routinisation [12]: when a compositional phrase is
used with a specific meaning in discourse, it is likely to be adopted by the con-
versation partner and become a routine, a strong convention for the duration of
a conversation. But such routines are more than just a temporary phenomenon
of dialogue. Depending on factors such as frequency or saliency they might also
persist beyond the scope of a conversation and leave a permanent trace in a
human’s linguistic inventory [1].

While such mechanisms have already been proposed in the theoretical litera-
ture, we want to bring these models to a next level by describing a computational
algorithm of how to dynamically derive holistic routines in Fluid Construction
Grammar [17]. The following section presents a formal definition of the algorithm
which can be used to chunk constructions, with reference to the computational
concepts employed by FCG. Section 3 discusses consequences of using multiple
representations and handling and exploiting redundant information in the lin-
guistic inventory. Section 4 addresses not only the repercussions of the approach
for artificial language evolution experiments but also potential applications in
natural language processing tasks, followed by the conclusion.

2 Chunking in Fluid Construction Grammar

For the remainder of this article we will use the simple example phrase “the
pretty dog” to illustrate the workings of the algorithm. The example is highly
simplified and we make no claim about the best or most realistic linguistic repre-
sentation of the example phrase. For our purposes, we only require a very simple
grammar with the three lexical constructions (the-cxn, pretty-cxn and dog-cxn)
as well as two grammatical constructions to link the adjective to the noun
(adjective-noun-cxn) as well as the article to the noun phrase (article-np-cxn).

4 K. Stadler

While we assume familiarity with the basic concepts of Fluid Construction
Grammar, we briefly recapitulate the core concepts employed by FCG before
presenting the chunking algorithm. For a more detailed account of the construc-
tion application process in FCG we kindly refer the interested reader to [17] as
well as the individual articles referenced throughout this section.

Figure 1 shows the adjective-noun-cxn from the example phrase which rep-
resents the coupling of a specific semantic structure on the left with its syntactic
representation on the right. The construction expresses the association of two sib-
ling units (an adjective and a noun) under one overarching unit. On the semantic
pole, the construction establishes variable equality between the respective refer-
ents of the units’ semantic predicates by using the same 7ref variable. On the
syntactic pole on the right, this operation is expressed by a form feature which
specifies that the form content of the adjective-unit has to directly precede the
form content of the noun-unit.

Of the units visible in the example construction, we will refer to the first
three (above the dashed line) as the match units of the construction, since they
have to unify with the transient feature structure during the matching phase
of FCG construction application [18]. The transient feature structure, which
captures FCG’s intermediate processing structure, has to fulfill the constraints
expressed within the match units in order for the construction to apply. In the
case of the example construction they assert that the lexical categories (lex-cat)
of the two units which are combined are adjective and noun, respectively. They
stand in contrast to the J-units (below the dashed line) which are the core
component of FCG responsible for building hierarchy [3]. Their contents are
ignored during the initial matching phase but are merged in during the second
phase of construction application, which allows the creation of new units on both
poles.

2.1 Terminology

The chunking algorithm presented here can be used to combine a collection of
co-occurring constructions into one holistic chunked construction which has as
its main property that its application results in exactly the same changes to
the FCG feature structure as if all of its constituent constructions had applied
consecutively. To determine which constructions are candidates for such a chunk-
ing operation, the algorithm builds on the networks of application dependencies
which can be tracked by FCG [22]. An example of such a dependency network
for the example phrase “the pretty dog” can be seen in Figure 2. The network
captures the dependencies between the constructions, i.e. it shows which con-
structions could only apply because of material that was merged in by earlier
constructions. Note that the conditions are not explicitly expressed in the net-
works, and usually much more general than visible in the specific examples. The
adjective-noun-cxn for example can take as its constituents any units with the
lexical categories adjective and noun, respectively.

The relationships captured by the dependency networks provide the basis for
the chunking algorithm, since it only makes sense to chunk together construc-

Chunking Constructions 5

adjective-noun-cxn

?adjective-unit

?top-unit
— - . syn-cat
?adjective-unit syn-subunits ()zl:l
2top-unit (?adjective-unit (lex-cat
referent 2ref P - semsyn| ?noun-unit) adjective))
sem-subunits tag 2form
-uni (?adjective-unit i "
Znoun-unit notnounit) (form ?noun-unit
referent 2ref (meets syn-cat

2adjective-unit 1
?adjectiy —
?noun-unit))) (Lex-cat noun))

?adjective-noun-unit
?adjective-

?adjective-unit) — ?form ?adjective-unit
J noun-unit J
?top-unit ?top-unit syn-cat
?noun-unit rf!e;ent (=1 ?noun-unit
‘re

(lex—cat
noun-phrase))

pretty-cxn

?top-unit ?top-unit
sem syn
tag ?meaning 4—| tag ?form
(meaning (== (pretty Z?ref))) (form ((string ?pretty-unit "pretty")))

?pretty-unit ?pretty-unit
— ?meaning ?top-unit ?top-unit — ?form
referent ?ref syn-cat (==1 (lex-cat adjective))

Fig. 1. Two of the original constructions required to parse or produce the example
phrase. Above: the phrasal adjective-noun-cxn which consists of three match units
(above the dotted line) and one J-unit (below) on each pole. The match units match
onto the adjective and noun units as well as their parent unit, while the J-unit is used
to introduce hierarchy into the transient feature structure. Below: the simple lexical
pretty-cxn with just one match unit matching on the simple semantic predicate pretty
and its corresponding string representation, and one J-unit to manipulate the feature
structure accordingly.

article-np-cxn

the-cxn adjective-noun-cxn

pretty-cxn dog-cxn

Fig. 2. The construction dependency network [22] for parsing the example phrase
“the pretty dog”, using three lexical constructions as well as two grammatical ones
(adjective-noun-cxn and article-np-cxn). Note that the ordering of constructions
is only for clarification, the exact ordering of constituents is not dependent on the or-
dering of construction applications. The direction of processing is bottom-up (i.e. the
adjective-noun-cxn could only apply because both pretty-cxn and dog-cxn applied
before and supplied material for the adjective-noun-cxn to match on, although in
no particular order). The exact matching conditions are also not shown, but since the
model is general they can be arbitrarily complex (or simple).

6 K. Stadler

tions which actually interact in construction application, i.e. they merge in or
match on the same material of the transient feature structure. Consequently, it
is only possible to chunk together connected subsets of a dependency network.
Example chunks from the given network could be the-cxn together with dog-cxn,
adjective-noun-cxn and article-np-cxn, which would leave an open slot for any
adjective and thus represent a general the-<adjective>-dog-cxn. The maximal
case is when the entirety of the network is chunked together, which would signify
a direct representation of the entire phrase “the pretty dog” including linking op-
erations [13]. We call the (sub-)hierarchy of a dependency network that a chunked
construction is based on its underlying construction hierarchy or also the chun-
ked hierarchy, and the constructions which contribute to a chunked construction
its constituent constructions.

2.2 The algorithm

In order for a chunked construction to have exactly the same impact on the
transient feature structure as if all of its constituent constructions had applied
consecutively, this construction has to meet the following requirements:

— it combines all the match conditions expressed by its constituent construc-
tions (it is consequently applicable in exactly the same contexts as its un-
derlying construction hierarchy)

— it merges in all the same units and unit-content as all the constructions of
the original hierarchy

Starting from an initially empty construction with no units on either pole, the
chunked construction is created through the following steps which are applied
to both the semantic and the syntactic poles separately:

— Given a hierarchy of dependent constructions, represented by a subtree of a
construction dependency network, go through the constructions bottom-up'
and, for every construction:

1. match units which are matched on parts of the feature structure which
were already there before the first construction of the chunked hierarchy
applied are copied over to the chunked construction as they are or, if the
unit is already part of the chunked hierarchy, the match constraints are
merged into the already existing unit.

2. match units which are matched on structure which was only merged in by
one of the previous constructions which are part of the chunked hierarchy
are added to the chunked construction as J-units. The reasoning behind
this is as follows: if the chunked construction applies then all the match
conditions for the leaves of the dependency network are met (since the

! The exact ordering doesn’t matter as long as a construction’s priming constructions
(i.e. its children in the dependency network, which means that they provided some
content for the construction to match on) are processed first. This can easily be
achieved by processing the constructions in the order of their original application.

Chunking Constructions 7

relevant match conditions were taken over as they are). Consequently,
the applicability of all inner constructions is met since all conditions of
its dependent constructions are met. While the match conditions of all
inner constructions of the dependency hierarchy are thus not relevant,
the information is still required for merging, making the transformation
to J-units an ideal solution.

3. J-units are copied over as they are, or merged with the current unit
content if the J-unit is already part of the chunked construction.

— Return the chunked construction

Additional issues have to be taken into account every time a unit is added
to the chunked construction:

— Merging units: when the same unit is referred to from more than one con-
struction of the hierarchy, the contents of the respective match units have
to be merged together into one unit. This operation is not to be confused
with the merge applied during construction application, where content from
a match pattern is merged into the transient feature structure [2]. Rather, we
are talking about merging multiple match patterns into one all-encompassing
match pattern. What this means becomes clear when looking at the example
of a chunked construction in Figure 3. All five constructions underlying this
chunk matched on different subparts of the top unit’s meaning and form fea-
tures — in the chunked construction all these constraints are brought together
in one unit, with all special operators (in this case only ==) being preserved.
The example case is trivial since the constraints are non-overlapping, but
more complex handling is required when different special operators applying
on the same feature have to be combined.

— Tracking of transitive variable equalities: during step-wise construction ap-
plication, variable linking (such as equating the referents of two previously
unrelated units) is carried out incrementally [19]. Individual variables are
added one by one and get linked during the unification step of construction
application. In a chunked construction however there are no intermediate uni-
fication steps, therefore all variable equalities have to be expressed explicitly.
This can also be seen in Figure 4, where only one variable is introduced on
the semantic pole, in contrast to three in the original construction applica-
tion process which only get equated later on by the two grammatical linking
constructions. To take care of this, the variable bindings established during
construction application have to be inspected every time a new construc-
tion is processed during the build-up of a chunked construction. Whenever a
binding between two variables is detected, the algorithm selects one of them
to become the new unique representation of that variable, and greedily re-
places all occurrences of the other variable. This approach makes the linking
of variables explicit and guarantees that all variable equalities are expressed
in only one step whenever the chunked construction is applied.

8 K. Stadler

chunked-cxn ((article-noun-cxn adjective-noun-cxn the-cxn dog-cxn pretty-cxn))

?top-unit
" tag ?form-1 == (string ?the-unit "the"
?top-unit ?g fomm (‘ N _unit "dog" "
?form-2 (gory (== (string ?dog-unit "dog")))
tag ?meaning-1 2 ~ __ i unit " "
) ! (o (qet 2ref))) sem syn ?form-3 (form (== (string ?pretty-unit "pretty")))
meaning T et rre < ?form-4 (form
?meaning-2 (peaning (== (dog ?ref))) (==)
? i (meets ?pretty-unit
?meaning-3 ?dog-unit)))
(meaning (== (pretty Z?ref))) ?form-5 (form
(==
(meets ?the-unit
?pretty-unit)))

?the-unit
?the-unit ?2top-unit — ?form-1
— ?meaning-1 ?top-unit syn-cat (==1 (lex-cat article))
referent ?ref
?dog-unit
?dog-unit 2top-unit — 2form-2
— ?meaning-2 ?top-unit syn-cat (——1 (lex—cat noun))

referent ?ref

?pretty-unit

?pretty-unit

?top-unit — ?form-3
ing- 2top-
— ?meaning-3 Fig L syn-cat (==1 (lex-cat adjective))
referent ?ref
?adjective-noun-unit
?adjective- 4 ?pretty-unit
?pretty-unit .adjectlye iy — ?form-4 ol
noun-unit PHopuunit ?top-unit
ALe R syn-cat 2dog-uni
. ?dog-unit
2dog-unit rjefe;em (==1 (lex-cat noun))
re:
A " ?article-noun-unit
7the- -
?the-unit ?article ; “?the-unit
noun-unit PHop-unit — ?form-5
- ?top-! P
?adjective- : : | referent AT syn-cat 2adjective-
noun-unit ?ref (:(Tex—cat noun-unit
article-noun-phrase))

Fig. 3. FCG representation of the chunked construction derived from the full original
construction hierarchy for processing “the pretty dog”. The construction encompasses
the match conditions and operations of all three lexical constructions as well as the
two linking constructions.

Chunking Constructions 9

chunked-cxn ((article-noun-cxn adjective-noun-cxn the-cxn pretty-cxn))

?top-unit
syn-subunits (?noun-unit)
tag ?form-1
" (form
?top-unit (==
; (string ?the-unit "the")))
sem-subunits 2form-2
" ? —unit ? -uni
?noun-unit (?noun-unit) sem syn (f(gim ?noun-unit
feront tag ?meaning-1 €——p (string ?pretty-unit syn-cat
referen (meaning "pretoyt))) un
2ref (== (det ?ref))) 2form-3 (lex-cat noun))
?meaning-2 (form
(meaning (== X
(== (pretty ?ref))) (meets ?pretty-unit
?noun-unit)))
?form-4
(form
?r:\eets ?the-unit
?pretty-unit)))
?the-unit
?the-unit ?top-unit — ?form-1
— ?meaning-1 ?top-unit syn-cat (==1 (lex-cat article))
referent ?ref
?pretty-unit
?pretty-unit 2top-unit — ?form-2
— ?meaning-2 ?top-unit syn-cat (==1 (lex-cat adjective))
referent 2ref
?adjective-noun-unit
; ?adjective- —, 2form-3 ?pretty-unit
? o ?
?pretty-unit noun-unit i . 2top-unit .
op-uni syn-ca 5 i
?noun-unit referent _— ?noun-unit
- 2ref (lex—-cat noun-phrase))
2the-unit 7article- ?article-noun-unit e
noun-unit) _ 2orm-4 ?the-uni
?adjective: f t 7top-unit ?top-unit
: . referen - syn-cat o e
noun-unit 2ref (5;:1 Padjective
(lex-cat noun-unit
article-noun-phrase))

Fig. 4. FCG representation of a chunked construction based on four out of the five
constructions required for processing “the pretty dog”. This example, which could be re-
phrased as a the-pretty-<noun>-czn shows how chunking can be used to create chunks
with slots, and potentially even chunks comprising multiple grammatical constructions
without any lexical material.

3 Computational and conceptual considerations

The immediate use of chunked constructions is evident: since they apply in the
same contexts as their underlying construction hierarchy and affect the feature
structure in exactly the same way, they can be used in place of these composi-
tional construction applications. It is useful to look into some of the consequences
and challenges of the approach.

— From a processing point of view, chunking introduces the possibility of trade-
off between grammar size and complexity of search. The flexibility of full
compositionality is sacrificed for a reduction in combinatorial complexity of

10 K. Stadler

the search space in combination with a decrease of processing cost for the
application of individual constructions. The sacrifice for this is, however,
potentially huge: adding all potential subhierarchies of all utterances that
are encountered by a speaker in parsing or production to the constructicon
would lead to the holistic storage of all compositional (sub-)structures ever
encountered, as exemplified in Figure 5. This explosion in grammar size
would have to be dampened, retaining only those constructions which are
actually relevant and useful to the language user.

— In some ways the optimisations that chunked constructions reproduce func-
tionality of construction dependency networks, particularly the priming net-
works already implemented in FCG [22]. But unlike in dependency networks,
chunked constructions are autonomous from their original constituent parts.
While entrenchment through frequent co-occurrence can lead to a strong
preference for co-activation in dependency networks as well, the underlying
representations of the constituent constructions do not change, and are in-
dividually activated and processed every time the compositional structure
is encountered. In the chunking approach, the content of the constructions
is copied and the new constructicon entries are not explicitly coupled to
their constituent parts. The only connection betweem them is in fact indi-
rect, through direct competition in search. This corresponds nicely to the
duality observed in human language processing: while a human might use
a chunked version of a construction in active parsing and production, the
compositional route is still present and very much accessible to the language
user when required. He can potentially be aware of the compositionality of
his or her utterance since it is still represented in the linguistic inventory,
but in most cases of processing this representation is not regarded due to a
preference for the holistic analysis.

— Another important feature which sets the chunking approach apart from
optimisations using construction networks is that it is possible to chunk
together structures in which a single construction is used more than once.
This is relevant for any compositional idiomatic expression in which the same
construction occurs at least twice, and particularly when a construction can
be used recursively, as is the case in natural language. The easiest example
for this is a noun phrase which is embedded in another (more complex) noun
phrase, such as “the cat on the mat”. In a priming network, trying to capture
the entrenched and thus preferred parsing of such a phrase will result in a
(potentially indirect) circle. Instead of representing a particular instance of
chunking, construction networks constitute a separate layer which generalises
eagerly to all (co-)occurrences of constructions. The interesting fact that
chunked constructions do not introduce an additional layer of representation
into the formalism will be discussed in more detail in the next section.

No matter to what extent chunked constructions are used in practice, the
approach brings additional challenges for search. Creating redundant represen-
tations is only half the job, more importantly this redundancy has to be handled
and exploited efficiently during actual parsing and production. The decision of

art-np-cxn

adj-noun-cxn

art-np-cxn

adj-noun-cxn

dog-cxn

art-np-cxn

adj-noun-cxn

pretty-cxn

adj-noun-cxn

pretty-cxn

art-np-cxn

adj-noun-cxn

N

dog-cxn pretty-cxn

art-np-cxn

the-cxn

art-np-cxn

N

adj-noun-cxn the-cxn

adj-noun-cxn

dog-cxn pretty-cxn

Chunking Constructions

art-np-cxn

adj-noun-cxn the-cxn

dog-cxn

art-np-cxn

TN

adj-noun-cxn the-cxn

pretty-cxn

adj-noun-cxn

dog-cxn

art-np-cxn

adj-noun-cxn

dog-cxn pretty-cxn

the-cxn

11

Fig. 5. The twelve different chunkable sub-hierarchies for the dependency network of
the example phrase. The minimal case with just two grammatical constructions can
be found at the top left, the full hierarchy which also corresponds to the complete
dependency network of the parse at the bottom right. The number of possible com-
binations for a dependency hierarchy is a function of the tree structure of the depen-
dencies. Note that with the exception of the last two, none of these hierarchies can
be represented by their surface forms alone, since the resulting collapsed constructions
contain both semantic as well as syntactic slots (such as the chunked construction
in Figure 4). The hierarchy in the middle of the second line for example could be
coined a general the-<noun-phrase>-cxn, the one above it a somewhat more spe-
cialised <article>-pretty-dog-cxn.

12 K. Stadler

which chunked constructions to retain or even reinforce and which ones to re-
move from the linguistic inventory are closely coupled to their utility for the
language user, which is highly correlated to their frequency of activation dur-
ing search. Intelligent models of construction inventory self-organisation should
not only capture the autonomy of frequently accessed chunked constructions,
but also dampen the productivity of its constituent constructions when they are
only infrequently activated on their own.

4 Applications

The study of the emergence and self-organisation of linguistic inventories has
been at the core of experiments carried out in Fluid Construction Grammar.
While the distributed development of a shared lexicon [14] and shared ontolo-
gies of perceptually grounded categories [15] have been investigated and suc-
cessfully characterised early, the extension of these principles to compositional
structures is not that straightforward. The additional problem arising with com-
positional structures is that of multi-level selection [21]. For competition on
one level (i.e. holistic names) consolidation strategies based on lateral inhibition
constitute an adequate model for selecting linguistic conventions. But once such
entries are themselves re-used as parts of larger compositional structures it is
not clear on which units the lateral inhibition dynamics should apply. So far
only the explicit linking of constructions in a separate network layer has been
proposed as a solution [20], but a model building on chunked constructions of-
fers an alternative approach to the same problem. Instead of explicitly coupling
individual co-occurring constructions together, chunked constructions added to
the constructicon could implicitly compete with their compositional constituents
during search. One of the central tenets of the multiple representation model is
that there is more than just one productive unit at play in producing or un-
derstanding any compositional structure, as exemplified by dual-route models of
lexical access in which direct and compositional access explicitly compete with
each other [6]. Given the similarity of the phenomena in these two domains, it is
likely that a cognitively plausible computational model of capturing redundancy
and productivity in human language will also provide answers to open research
questions in the field of self-organising communication systems.

Conversely, a better understanding of language coordination dynamics based
on computational models would also lead to improvements in Natural Language
Processing systems. The phenomenon of routinisation in humans happens auto-
matically and leads to strong lexical and syntactic alignment processes between
interlocutors [12]. Such alignment processes and their importance for the emer-
gence of shared communication systems is well-known [16], but they are hardly
exploited in natural language applications. For example, the rigid nature of most
current dialogue systems keeps them far from human-like performance, but the
importance and potential benefits of reciprocal learning in language coordination
between humans and interactive agents is receiving more and more attention [4].

Chunking Constructions 13

The chunking mechanism presented here provides a cognitively plausible basis
for the computational modelling of routinisation effects. But interactive align-
ment does not just lead to more natural discourse, it can also aid in optimis-
ing and guiding computational processing through a unified theory of dialogue.
Tracking of discourse referents and anaphora resolution are often treated as
modular problems which are not handled by core parsing components but using
extra-linguistic systems. Since routines are derived from more specific cases of
use than their individual constituents, humans use them naturally to express as-
sociation to specific discourse referents, a fact easily exploited by systems making
use of dynamically-derived redundant representations.

5 Conclusion

In this article we argued for the relevance of redundant representations in the
linguistic inventory and presented an algorithm for dynamically deriving holis-
tic constructions from sets of dependent constructions which are used to build
compositional structure. The model crucially relies on some of the properties
of Construction Grammar in general and some features of Fluid Construction
Grammar in particular. Construction Grammar makes use of only a single rep-
resentation for all kinds of linguistic structure which is also capable of handling
the additional complexity that characterises chunked constructions. Lexical and
grammatical constructions can be combined just as easily, and parts of a chun-
ked phrase can also be left unexpressed. Constructions derived by chunking can
themselves become part of even larger chunks using exactly the same algorithm.
The fact that FCG is unification-based enables the combination and composition
of chunked constructions to be carried out relatively straightforward.

Another important feature is the bidirectional applicability of constructions
in both parsing and production. Routinisation has been shown to cover both
language understanding as well as generation, and a homogeneous linguistic
representation for both tasks allows to support this aspect and enable positive
feedback loops for alignment processes between interlocutors. Most natural lan-
guage processing frameworks on the other hand are optimised for one task (most
prominently parsing), and this one-sidedness is often reflected in the representa-
tions and data structures they employ. Consequently, these approaches can not
easily capture and take advantage of cognitive mechanisms such as routinisation.

Although we pointed out some potential applications in language modelling
and processing, the mechanism is by far not limited to these cases. Chunking is a
theory-neutral operation and can also be used for other purposes. Since chunked
constructions form autonomous units, their content is immediately amenable to
modifications, be it capturing semantic idiosyncracies or simplifying syntactic
structure. The algorithm presented is thus not only useful for questions of opti-
mising linguistic processing, but also extensible to any area of linguistics research
in which entrenchment processes play a role.

14 K. Stadler

Acknowledgements

This research was carried out at the Artificial Intelligence Laboratory at Vrije
Universiteit Brussel with funding from the Vrije Universiteit Brussel. I would
like to thank Luc Steels, Pieter Wellens and Joachim De Beule for their help
with the work and Remi van Trijp for useful comments on an earlier draft.

Bibliography

[1] Bybee, J.: From usage to grammar: The mind’s response to repetition. Lan-
guage 82(4) (2006)

[2] De Beule, J.: A formal deconstruction of Fluid Construction Grammar.
In: Steels, L. (ed.) Computational Issues in Fluid Construction Grammar.
Springer Verlag, Berlin (2012)

[3] De Beule, J., Steels, L.: Hierarchy in Fluid Construction Grammar. In:
Furbach, U. (ed.) Proceedings of the 28th Annual German Conference on
Al Lecture Notes in Artificial Intelligence, vol. 3698, pp. 1-15. Springer
Verlag (2005)

[4] Fernandez, R., Larsson, S., Cooper, R., Ginzburg, J., Schlangen, D.: Re-
ciprocal learning via dialogue interaction: Challenges and prospects. In:
Proceedings of the IJCATI 2011 Workshop on Agents Learning Interactively
from Human Teachers (ALIHT). Barcelona, Catalonia, Spain (2011)

[6] Goldberg, A.E.: Constructions. A Construction Grammar Approach to Ar-
gument Structure. The University of Chicago Press (1995)

[6] Hay, J.: Causes and Consequences of Word Structure. Routledge (2003)

[7] Langacker, R.W.: Foundations of Cognitive Grammar, vol. I: Theoretical
Prerequisites. Stanford University Press (1987)

[8] Langacker, R.W.: A usage-based model. In: Rudzka-Ostyn, B. (ed.) Topics
in Cognitive Linguistics, Current Issues in Linguistic Theory, vol. 50, pp.
127-161. John Benjamins Publishing Company (1988)

[9] McQueen, J.M., Cutler, A.: Morphology in word recognition. In: Spencer,
A, Zwicky, A.M. (eds.) The Handbook of Morphology, pp. 406-427. Black-
well Handbooks in Linguistics, Blackwell, Oxford (1998)

[10] Mos, M.B.J.: Complex Lexical Items. Netherlands Graduate School of Lin-
guistics (2010)

[11] O’Donnell, T.J., Snedeker, J., Tenenbaum, J.B., Goodman, N.D.: Produc-
tivity and reuse in language. In: Proceedings of the Thirty-Third Annual
Conference of the Cognitive Science Society (2011)

[12] Pickering, M.J., Garrod, S.C.: Toward a mechanistic psychology of dialogue.
Behavioral and Brain Sciences 27(2), 169-190 (2004)

[13] Steels, L., De Beule, J., Neubauer, N.: Linking in Fluid Construction Gram-
mars. In: Proceedings of BNAIC. pp. 11-18. Transactions of the Belgian
Royal Society of Arts and Sciences, Brussels (2005)

[14] Steels, L.: Emergent adaptive lexicons. In: Proceedings of the Simulation of
Adaptive Behavior Conference. The MIT Press, Cambridge MA (1996)

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Chunking Constructions 15

Steels, L.: The origins of ontologies and communication conventions in
multi-agent systems. Journal of Agents and Multi-Agent Systems 1(2), 169
194 (1998)

Steels, L.: Language as a complex adaptive system. In: Schoenauer, M.
(ed.) Proceedings of the Sixth International Conference on Parallel Problem
Solving from Nature (PPSN VI). Lectures Notes in Computer Science, vol.
1917, pp. 17-26. Springer-Verlag, Berlin (2000)

Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

Steels, L., De Beule, J.: Unify and Merge in Fluid Construction Grammar.
In: Vogt, P., Sugita, Y., Tuci, E., Nehaniv, C. (eds.) Symbol Grounding And
Beyond. Proceedings of the Third International Workshop on the Emer-
gence and Evolution of Linguistic Communications, EELC 2006. Lecture
Notes in Computer Science, vol. 4211, pp. 197-223. Springer (2006)

Steels, L., De Beule, J., Neubauer, N.: Linking in Fluid Construction Gram-
mar. In: Proceedings of BNAIC. Transactions of the Belgian Royal Society
of Arts and Sciences. (2005)

Steels, L., van Trijp, R., Wellens, P.: Multi-level selection in the emergence
of language systematicity. In: Proceedings of the 9th European conference
on Advances in Artificial Life. pp. 425-434. Springer-Verlag (2007)

van Trijp, R.: Analogy and Multi-level Selection in the Formation of a Case
Grammar. A Case Study in Fluid Construction Grammar. Ph.D. thesis,
University of Antwerp, Antwerp (2008)

Wellens, P.: Organizing constructions in networks. In: Steels, L. (ed.) De-
sign Patterns in Fluid Construction Grammar. John Benjamins, Amsterdam
(2011)

Zuidema, W.: What are the Productive Units of Natural Language Gram-
mar? A DOP Approach to the Automatic Identification of Constructions.
In: Proceedings of the Tenth Conference on Computational Natural Lan-
guage Learning. pp. 29-36. Association for Computational Linguistics, New
York City, USA (June 2006)

