
A First Encounter with
Fluid Construction Grammar

Luc Steels

This paper is the authors’ draft and has now been officially published as:

Luc Steels (2011). A First Encounter with Fluid Construction Grammar. In Luc Steels (Ed.), Design Patterns

in Fluid Construction Grammar, 31–68. Amsterdam: John Benjamins.

Abstract

This chapter introduces the main mechanisms available in FCG for repre-
senting constructions and transient structures. It sketches the process whereby
constructions are applied to expand transient structures and illustrates how
templates are used to define constructions in a more abstract and modular way.
Lexical constructions are used as the main source of examples.

1. Introduction

Fluid Construction Grammar (FCG) is a formalism for defining the inventory
of lexical and grammatical conventions that a language user needs to know and
the opserations with which this inventory is used to parse and produce sentences.
FCG supports two ways to define constructions. One can use templates which ab-
stract away from many details to highlight the linguistic content of a construction.
Templates allow designers to implement a particular design pattern found in human
languages, such as phrase structure, field topology, agreement systems, unmarked
forms, argument structure, etc. Templates specify aspects of a construction which
are then assembled into an ‘operational’ construction, i.e. a construction that con-
tains all the details necessary for driving parsing and production.

This chapter provides a first survey of the main elements available for represent-
ing linguistic structures and for orchestrating constructional processing at the oper-
ational level. Although linguists will mostly use templates for defining grammar
fragments of specific languages, it is nevertheless useful to know what the building

1

2 L. Steels

blocks of FCG are at the operational level. This is of course also necessary if one
wants to implement new templates.

The first section introduces the tools available for representing transient struc-
tures. FCG uses feature structures (Carpenter, 2002) which are widely used by
many linguistic formalisms. A transient structure consists of a set of units, features
associated with these units, and values for these features. FCG splits the features
into a semantic and a syntactic pole to improve readability and make processing
more efficient. Feature structures are not only used to represent transient structures
but also constructions.

Constructions are examined in the second section. FCG uses techniques from
unification-based grammars to implement constructional processing (Kay, 1986).
The application of a construction proceeds by matching the conditional pole (the
semantic pole in production or the syntactic pole in parsing) against the current
transient structure and by adding the information contained in the contributing pole
(the syntactic pole in production or the semantic pole in parsing). This section looks
at how variables and additional operators are available to make constructions more
abstract, and at the J-operator which is the main primitive for building hierarchical
structure.

The chapter ends with a discussion of templates, which is the primary way
through which the definition of constructions is made more modular and hence eas-
ier to read and implement. Some templates create the skeleton of a construction
whereas others add more components in order to handle different issues, such as the
linking of constituent meanings, agreement relations, etc.

2. Representing Transient Structures

A transient structure contains all the information that is needed either to parse
or produce a sentence. Parsing is not just the construction of a syntactic struc-
ture but the full reconstruction of the meaning of a sentence, including the proper
linking of the meanings contributed by the different lexical items and constructions
used. Production is not just the generation of a random syntactic structure but the
transduction of meaning into a fully specified surface form. Human languages are
known to employ a lot of constraints from many different levels of linguistic analy-
sis (pragmatic, semantic, syntactic, morphological, phonological and phonetic) and
so transient structures encompass all these levels. They typically contain dozens of
units and hundreds of features.

A First Encounter with Fluid Construction Grammar 3

2.1. Units

Transient structures are decomposed into a set of units, which correspond to
individual words, morphemes, or constituents. Each unit has a set of features that
hold information about the unit. A unit has both a semantic and a syntactic pole.

• The semantic pole contains features that concern the meaning and commu-
nicative function aspects of a unit, including what arguments are available to
combine this meaning with meanings supplied by other units. The semantic
pole also contains pragmatic and semantic categorizations and a list of the
semantic subunits of the unit.

• The syntactic pole contains features concerning the syntactic side of a unit.
This includes constraints on the form of the utterance (for example how the
forms of the subunits are to be ordered sequentially), as well as syntactic,
morphological and phonological categorizations of the unit and its possible
syntactic subunits.

Both poles may also have footprints recording which constructions participated in
creating them, as explained later.

The semantic and syntactic poles are typically displayed separately, in the sense
that the semantic poles for all units are grouped together on the left side and the
syntactic poles for all units are grouped together on the right side. (See Figure 3
and 2.) Such representations are sometimes called coupled feature structures. It
is not the only representation possible, because all features of a unit could also be
displayed together in one big list, but this bipolar arrangement is more convenient
for examining complex transient structures.

Each unit in a transient structure has a unique name which can be used to refer
to the unit. Unit names are also very useful when inspecting a feature structure and
are the first example of FCG-symbols that are used liberally in constructions and
constructional processing.

An FCG-symbol consists of a set of characters without spaces. There is no
restriction on the characters, and to avoid confusion and typing errors, no distinc-
tion is made for letter case. nominal-phrase is equivalent to Nominal-phrase or
Nominal-Phrase. As soon as a symbol is used, it is known to the FCG-interpreter.
For example, in order to specify the syntactic subunits of a unit we can simply
list the names of these subunits. One special class of FCG-symbols acts as vari-
ables, which are conventionally denoted by putting a question mark in front, as in

4 L. Steels

?phrase or ?gender. Variables play a crucial role in constructional processing as
is explained in the next section.

Figure 3 contains the graphical representation of a simplified transient structure.
The relevant constructions for this example are described in more detail in a later
chapter of this book (Steels, 2011). Such graphical representations are used for
inspecting and browsing through linguistic processes which quickly become very
complicated (see Bleys et al., 2011). By clicking on units, detail becomes visible
or is hidden. Even a simple phrase may contain large amounts of information, both
on the syntactic and semantic side, therefore transient structures can take up several
pages when displayed in full. Figure 3 shows a small, simplified example. An
enlarged display of the same structure is shown in Figure 2. The underlying tree of
units and subunits is shown in figure 1. Much more information, for example the
functional structure, is contained in the various features attached to each node of
this tree.

The feature structure shown in Figure 3 decomposes the phrase, “the mouse”,
into three units: nominal-phrase-12 for the nominal phrase as a whole, the-11
for the unit that introduces the word “the” and mouse-12 for the unit that in-
troduces the word “mouse”. The article and the noun hang from a unit, called
nominal-phrase-12, which itself hangs from a unit called top. The top unit acts
like a buffer, containing input materials that have not been treated yet. (There are
none here.) The indices occurring after names of units (12 in nominal-phrase-12

for example) have been generated by the FCG-interpreter.

!"#$

%"&'()*+,-.)/0+12$

3-0+11$ 4"5/0+12$

Figure 1. The constituent structure tree underlying the transient structure shown in
2.

A First Encounter with Fluid Construction Grammar 5

31/07/10 12:43Babel web interface

Page 1 of 1http://localhost:8000/

top

sem-subunits

top

(nominal-phrase-12)

syn-subunits

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(nominal-phrase-12)

Meaning:
((context ?context-67) (unique-definite ?indiv-37 ?base-set-81)
(mouse ?base-set-81 ?context-67))

reset

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), article-determiner-cxn determiner-nominal-phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

meaning

sem-subunits

footprints

args

sem-cat

nominal-phrase-12

((context ?context-67))

(mouse-12 the-11)

(determiner-nominal-phrase-cxn)

(?indiv-37 ?context-67)

((sem-function referring))

footprints

meaning

sem-cat

args

the-11

(the-cxn
article-determiner-cxn)

((unique-definite
?indiv-37
?base-set-81))

((determination
definite)

(sem-function
reference)

(is-countable +))

(?indiv-37 ?base-set-81)

footprints

meaning

sem-cat

args

mouse-12

(mouse-cxn
noun-nominal-cxn)

((mouse
?base-set-81
?context-67))

((is-animate +)
(class object)
(sem-function
identifier)

(is-countable +))

(?base-set-81
?context-67)

sem syn

form

syn-subunits

syn-cat

footprints

nominal-phrase-12

((meets the-11 mouse-12))

(mouse-12 the-11)

((is-definite +)
(number singular)
(phrase-type nominal-phrase))

(determiner-nominal-phrase-cxn)

form

syn-cat

footprints

the-11

((string the-11 "the"))

((is-definite +)
(number singular)
(lex-cat article)
(syn-function
determiner))

(the-cxn
article-determiner-cxn)

form

syn-cat

footprints

mouse-12

((string mouse-12
"mouse"))

((number singular)
(lex-cat noun)
(syn-function nominal))

(mouse-cxn
noun-nominal-cxn)

31/07/10 12:45Babel web interface

Page 1 of 1http://localhost:8000/

top

sem-subunits

top

(nominal-phrase-12)

syn-subunits

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(nominal-phrase-12)

Meaning:
((context ?context-67) (unique-definite ?indiv-37 ?base-set-81) (mouse ?base-set-81 ?context-67))

reset

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), article-determiner-cxn determiner-nominal-phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

meaning

sem-subunits

footprints

args

sem-cat

nominal-phrase-12

((context ?context-67))

(mouse-12 the-11)

(determiner-nominal-phrase-cxn)

(?indiv-37 ?context-67)

((sem-function referring))

footprints

meaning

sem-cat

args

the-11

(the-cxn
article-determiner-cxn)

((unique-definite
?indiv-37
?base-set-81))

((determination
definite)

(sem-function
reference)

(is-countable +))

(?indiv-37 ?base-set-81)

footprints

meaning

sem-cat

args

mouse-12

(mouse-cxn
noun-nominal-cxn)

((mouse
?base-set-81
?context-67))

((is-animate +)
(class object)
(sem-function
identifier)

(is-countable +))

(?base-set-81
?context-67)

sem syn

form

syn-subunits

syn-cat

footprints

nominal-phrase-12

((meets the-11 mouse-12))

(mouse-12 the-11)

((is-definite +)
(number singular)
(phrase-type nominal-phrase))

(determiner-nominal-phrase-cxn)

form

syn-cat

footprints

the-11

((string the-11 "the"))

((is-definite +)
(number singular)
(lex-cat article)
(syn-function
determiner))

(the-cxn
article-determiner-cxn)

form

syn-cat

footprints

mouse-12

((string mouse-12
"mouse"))

((number singular)
(lex-cat noun)
(syn-function nominal))

(mouse-cxn
noun-nominal-cxn)

Figure 2. Zooming in on the semantic (top) and syntactic (bottom) poles of the
transient structure shown in figure 3.

6 L. Steels

3
1
/
0
7
/
1
0
 1

2
:3

9
B
a
b
e
l
w

e
b
 i
n
te

rf
a
c
e

P
a
g
e
 1

 o
f

1
h
tt

p
:/

/
lo

c
a
lh

o
s
t:

8
0
0
0
/

to
p

s
e
m

-s
u
b

u
n
it
s

to
p

(
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
1
2
)

s
y
n

-s
u
b

u
n
it
s

P
a

rs
in

g
 "

th
e

 m
o

u
s
e

"

A
p

p
ly

in
g

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(5
)

 i
n

 d
ir

e
c

ti
o

n
 !

F
o

u
n

d
 a

 s
o

lu
ti

o
n

in
it
ia

l
s
tr

u
c
tu

re
to

p

a
p

p
lic

a
ti
o

n
p

ro
c
e
s
s

q
u
e
u
e

a
p

p
lie

d
c
o

n
s
tr

u
c
ti
o

n
s

re
s
u
lt
in

g
s
tr

u
c
tu

re

to
p

(
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
1
2
)

M
e

a
n

in
g

:
(
(
c
o
n
t
e
x
t

?
c
o
n
t
e
x
t
-
6
7
)

(
u
n
i
q
u
e
-
d
e
f
i
n
i
t
e

?
i
n
d
i
v
-
3
7

?
b
a
s
e
-
s
e
t
-
8
1
)

(
m
o
u
s
e

?
b
a
s
e
-
s
e
t
-
8
1

?
c
o
n
t
e
x
t
-
6
7
)
)

re
s
e
t

s
e
m

s
y
n

in
it
ia

l
*

m
o

u
s
e

-c
x
n

 (
t)

,
n
o

u
n

-n
o

m
in

a
l-

c
x
n

,
th

e
-c

x
n

 (
t)

,
a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

d
e

te
rm

in
e

r-
n

o
m

in
a

l-
p

h
ra

s
e

-c
x
n

a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

th
e
-c

x
n

 (
t)

m
o

u
s
e

-c
x
n

 (
t)

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

th
e
-c

x
n

 (
t)

n
o

u
n

-n
o

m
in

a
l-

c
x
n

m
o

u
s
e

-c
x
n

 (
t)

m
e
a
n
in

g

s
e
m

-s
u
b

u
n
it
s

fo
o

tp
ri
n
ts

a
rg

s

s
e
m

-c
a
t

n
o

m
in

a
l-

p
h
ra

s
e

-1
2

(
(
c
o
n
t
e
x
t

?
c
o
n
t
e
x
t
-
6
7
)
)

(
m
o
u
s
e
-
1
2

t
h
e
-
1
1
)

(
d
e
t
e
r
m
i
n
e
r
-
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
c
x
n
)

(
?
i
n
d
i
v
-
3
7

?
c
o
n
t
e
x
t
-
6
7
)

(
(
s
e
m
-
f
u
n
c
t
i
o
n

r
e
f
e
r
r
i
n
g
)
)

fo
o

tp
ri
n
ts

m
e
a
n
in

g

s
e
m

-c
a
t

a
rg

s

th
e
-1

1

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

(
(
u
n
i
q
u
e
-
d
e
f
i
n
i
t
e

?
i
n
d
i
v
-
3
7

?
b
a
s
e
-
s
e
t
-
8
1
)
)

(
(
d
e
t
e
r
m
i
n
a
t
i
o
n

d
e
f
i
n
i
t
e
)

(
s
e
m
-
f
u
n
c
t
i
o
n

r
e
f
e
r
e
n
c
e
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)
)

(
?
i
n
d
i
v
-
3
7

?
b
a
s
e
-
s
e
t
-
8
1
)

fo
o

tp
ri
n
ts

m
e
a
n
in

g

s
e
m

-c
a
t

a
rg

s

m
o

u
s
e

-1
2

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

(
(
m
o
u
s
e

?
b
a
s
e
-
s
e
t
-
8
1

?
c
o
n
t
e
x
t
-
6
7
)
)

(
(
i
s
-
a
n
i
m
a
t
e

+
)

(
c
l
a
s
s

o
b
j
e
c
t
)

(
s
e
m
-
f
u
n
c
t
i
o
n

i
d
e
n
t
i
f
i
e
r
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)
)

(
?
b
a
s
e
-
s
e
t
-
8
1

?
c
o
n
t
e
x
t
-
6
7
)

s
e
m

s
y
n

fo
rm

s
y
n

-s
u
b

u
n
it
s

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

n
o

m
in

a
l-

p
h
ra

s
e

-1
2

(
(
m
e
e
t
s

t
h
e
-
1
1

m
o
u
s
e
-
1
2
)
)

(
m
o
u
s
e
-
1
2

t
h
e
-
1
1
)

(
(
i
s
-
d
e
f
i
n
i
t
e

+
)

(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
p
h
r
a
s
e
-
t
y
p
e

n
o
m
i
n
a
l
-
p
h
r
a
s
e
)
)

(
d
e
t
e
r
m
i
n
e
r
-
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
c
x
n
)

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

th
e
-1

1

(
(
s
t
r
i
n
g

t
h
e
-
1
1

"
t
h
e
"
)
)

(
(
i
s
-
d
e
f
i
n
i
t
e

+
)

(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
l
e
x
-
c
a
t

a
r
t
i
c
l
e
)

(
s
y
n
-
f
u
n
c
t
i
o
n

d
e
t
e
r
m
i
n
e
r
)
)

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

m
o

u
s
e

-1
2

(
(
s
t
r
i
n
g

m
o
u
s
e
-
1
2

"
m
o
u
s
e
"
)
)

(
(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
l
e
x
-
c
a
t

n
o
u
n
)

(
s
y
n
-
f
u
n
c
t
i
o
n

n
o
m
i
n
a
l
)
)

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

Fi
gu

re
3.

G
ra

ph
ic

al
di

sp
la

y
of

tr
an

si
en

ts
tr

uc
tu

re
w

he
n

pa
rs

in
g

or
pr

od
uc

in
g

“t
he

m
ou

se
”.

E
ac

h
bo

x
re

pr
es

en
ts

a
un

it
w

ith
its

na
m

e
an

d
fe

at
ur

e
va

lu
es

.
A

ll
fe

at
ur

es
of

th
e

se
m

an
tic

po
le

s
ar

e
di

sp
la

ye
d

on
th

e
le

ft
si

de
an

d
al

l
fe

at
ur

es
of

th
e

sy
nt

ac
tic

po
le

s
on

th
e

ri
gh

ts
id

e.
B

ot
h

po
le

s
ar

e
sh

ow
n

in
m

or
e

de
ta

il
in

Fi
gu

re
2.

A First Encounter with Fluid Construction Grammar 7

FCG-symbols, such as names of units, names of features, names of syntactic
categories and their values should all be chosen so as to make sense for a human
reader. Rather than calling a unit unit-1 it is better to call it mouse or mouse-15,
if this unit was formed on the basis of the word “mouse”. Additionally, rather
than calling a syntactic category G and its value M, it is better to call them respec-
tively gender and masculine. Indices (as 15 in mouse-15) are frequently used
when many symbols that have similar roles are needed. The index has no particu-
lar meaning except to differentiate the symbol from another one such as mouse-32
or mouse-55. The FCG-interpreter makes many symbols itself in the course of
constructional processing, and it uses these indices abundantly.

Even simple grammars involve thousands of names and feature structures
quickly become totally incomprehensible if abbreviations or irrelevant names are
chosen. Nevertheless, the meaning of all these symbols only comes from the func-
tion of the named element in the overall system. It is not because a unit is called
“nominal-phrase” that it starts functioning as a nominal-phrase or because the
case of a noun is called “nominative” that the FCG-interpreter knows what nom-
inative means. The role of an element in a feature structure is solely determined
by the context in which it appears and what operations are carried out over it. A
unit becomes a nominal-phrase because it has subunits categorized as article, adjec-
tive or noun, because it implies certain syntactic constraints among these subunits,
like ordering or agreement, because it contributes in a particular way to reconstruct
meaning, and so on.

2.2. List notation

There is also a list-notation of feature structures, used for typing feature struc-
tures through an editor or for looking at feature structures which are simply too big
to display graphically. The list-notation is of the form

(semantic-poles <--> syntactic-poles)

where both the semantic poles and the syntactic poles consist of the feature
structures listing the semantic respectively syntactic features of each unit. Each
unit in list notation has a name followed by an (unordered) list of features and their
values:

(unit-name

(feature1 value1)

...

(featuren valuen))

8 L. Steels

The value can either be a single item or a set of items. The ordering in which the
features are listed is insignificant. The value of a feature may itself consist of a
list of features and values. For example, the value of the sem-cat feature in the
example below is:

((determination definite)

(sem-function reference)

(is-countable +))

This value consists of three sub-features (determination, sem-function and
is-countable) with each their own respective (single) value. The ordering of
these sub-features in the list is irrelevant. The features that directly depend from
a unit are called unit-features (such as meaning or args in the semantic pole of
nominal-phrase-12). The others are called sub-features.

An example of a list-notation for the same feature structure as shown in Figure 3
follows. The unit names are in bold and the unit features in italics. The features and
values occurring in this example are all explained further on. In the semantic pole,
there is a unit for top, which has one semantic subunit called nominal-phrase-12.
nominal-phrase-12 has two semantic subunits: mouse-12 and the-11. The same
unit-names are found on the syntactic pole with pending syntactic features.

((top
(sem-subunits (nominal-phrase-12)))

(nominal-phrase-12
(sem-subunits (mouse-12 the-11))

(meaning ((context ?context-67)))

(args (?indiv-37 ?context-67))

(sem-cat ((sem-function referring)))

(footprints (determiner-nominal-phrase-cxn)))

(the-11
(meaning ((unique-definite ?indiv-37 ?base-set-81)))

(args (?indiv-37 ?base-set-81))

(sem-cat
((determination definite)

(sem-function reference) (is-countable +)))

(footprints (the-cxn article-determiner-cxn)))

(mouse-12
(meaning ((mouse ?base-set-81 ?context-67)))

(args (?base-set-81 ?context-67))

(footprints (mouse-cxn noun-nominal-cxn))

A First Encounter with Fluid Construction Grammar 9

(sem-cat
((is-animate +) (class object)

(sem-function identifier) (is-countable +)))))

<-->

((top
(syn-subunits (nominal-phrase-12)))

(nominal-phrase-12
(syn-subunits (mouse-12 the-11))

(form ((meets the-11 mouse-12)))

(syn-cat
((is-definite +) (number singular)

(phrase-type nominal-phrase)))

(footprints (determiner-nominal-phrase-cxn)))

(the-11
(form ((string the-11 "the")))

(syn-cat
((is-definite +) (number singular)

(lex-cat article) (syn-function determiner)))

(footprints (the-cxn article-determiner-cxn)))

(mouse-12
(form ((string mouse-12 "mouse")))

(syn-cat
((number singular) (lex-cat noun)

(syn-function nominal)))

(footprints (mouse-cxn noun-nominal-cxn))))

The feature structures used in FCG do not fundamentally differ from those
used in other feature-structure based formalisms. For example, a more tradi-
tional representation of the syntactic pole of the transient structure starting from
nominal-phrase-12 (leaving out the footprints) is shown in Figure 2.2.

The hierarchy is represented here by embedding one feature structure into an-
other one. Units do not have names because structure sharing is used instead. In
FCG, each unit is given a name and these names are used when explicitly defining
the subunits of a unit. This has the advantage that new subunits can be added or
units can be moved in the tree simply by changing the value of the subunits feature.
The advantage of using List-notation is that editors adapted to symbolic program-
ming (such as EMACS) come with all the necessary facilities for efficiently editing
list structures.

10 L. Steels

syn-cat

phrase-type nominal-phrase
is-definite +
number singular

syn-subunits

form
[
string ”the”

]

syn-cat

is-definite +
number singular
lex-cat article
syn-function determiner

form
[
string ”mouse”

]
syn-cat

number singular
lex-cat noun
syn-function nominal

Figure 4. A more traditional representation of feature structures.

The set of possible unit features and their values is entirely open. The linguist
may introduce new ones by just using them. They do not need to be declared in
advance. A core set of basic unit features has nevertheless become standard prac-
tice and it is advisable to use them, but the values of these features typically vary
substantially from one grammar to another. For example, a grammar for Russian
aspect would need to represent all sorts of aspect distinctions which are entirely
absent from a grammar for Japanese. The remaining subsections describe the main
unit features in more detail.

2.3. Representing Hierarchy

The sem-subunits and syn-subunits features are used to represent the hier-
archy of units and subunits in the semantic pole and the syntactic pole respectively,
and they are filled by an unordered list of names of subunits. By distinguishing be-
tween semantic and syntactic subunits, it is possible that the hierarchical structure

A First Encounter with Fluid Construction Grammar 11

on the semantic side is different from that on the syntactic side. For example, gram-
matical function words like “by” in passive constructions would not have a separate
unit in the semantic pole, and there are possibly units on the semantic pole which do
not show up explicitly in the syntactic structure or complete form of the sentence.

An example of sem-subunits and syn-subunits is seen in the nominal-phrase
unit in Figure 3. The syn-subunits of nominal-phrase-12 are the-11 and
mouse-12, written in list-notation as:

(syn-subunits (the-11 mouse-12))

In graphical representations of feature structures, such as in the one shown in Figure
2, the subunit features are used to draw the hierarchical structure.

The list of units of the sem-subunits and syn-subunits features is con-
sidered to be unordered. Thus, an equivalent way to specify the syn-subunits of
nominal-phrase-12 is:

(syn-subunits (mouse-12 the-11))

If ordering constraints need to be imposed on units, at whatever level of the hier-
archy, they have to be represented explicitly as part of the form constraints of the
relevant unit using predicates like preceeds or meets, as in other constraint-based
formalisms such as GPSG (Gazdar et al., 1985). (See the next subsection). The ex-
plicit representation of ordering makes it possible to handle languages with no strict
or much freer word order, without having recourse to movement-based approaches
to scrambling (Fanselow, 2001). When there is no order imposed by the grammar,
no order needs to be represented and the process rendering a feature structure into
an utterance will make random decisions. Moreover decisions on order can be pro-
gressively refined in language production as more information becomes available.
For example, it could be that the ordering of constituents inside nominal phrases
is already known but their ordering in the sentence as a whole still remains to be
decided.

2.4. Representing the Form of an Utterance

The form feature on the syntactic pole contains a description of the form char-
acteristics contributed by the unit. They are expressed in terms of predicates over
units. For example, the predicate string specifies which string is associated with
a unit, as in

(string mouse-12 ‘‘mouse’’)

which states that the unit mouse-12 introduces the string “mouse”. The predicate
meets specifies which units immediately follow each other in the utterance, as in

12 L. Steels

(meets the-11 mouse-12).
Form constraints can also be expressed over hierarchical units. For example, it
is possible to express that the unit nominal-phrase-43 has to follow the unit
verb-phrase-4 by saying

(preceeds verb-phrase-4 nominal-phrase-43)

Because the form of utterances is expressed with predicates, any kind of property
can be included in principle. It is easy to add information about intonation, tone,
or stress patterns by introducing predicates that specify these properties. The con-
straints could even include properties of gestures or pauses in speech.

The FCG-system includes a render-component that collects all form predicates
for all units at each level of the hierarchy and turns them into a linearly-ordered
utterance. It also includes a de-render-component that takes an utterance and turns
it into a list of units with the relevant form characteristics represented explicitly
using predicates. New form predicates can be introduced easily by extending these
render and de-render operations.

The complete form of a unit is defined as the union of all the values of the forms
of all its subunits plus its own form, and is computed dynamically whenever needed.
Thus, for the unit nominal-phrase-12 in the example above, the complete form is
equal to:

((meets the-11 mouse-12)

(string the-11 "the")

(string mouse-12 "mouse"))

This set of expressions describes the complete (written) form of the phrase “the
mouse”.

2.5. Representing Meaning

In principle, the representations used for the meaning of a unit are open-ended as
well. The linguist may for example decide to use a logic-based representation within
the tradition of formal semantics, such as Minimal Recursion Semantics (Copestake
et al., 2006) which has its roots in Montague semantics, or use some kind of frame
semantics as explored by many cognitive linguists (Baker et al., 1998). FCG is
part of a larger project that uses embodied cognitive semantics, but details of the
representations and mechanisms used for this are beyond the scope of the present
chapter (see (Steels, 2012) for more information).

A First Encounter with Fluid Construction Grammar 13

In the examples discussed further in this paper, a logic-style representation is
used, that is based on predicates and arguments. The meaning feature on the se-
mantic pole contains the predicates contributed by the unit and the args feature
contains those arguments of these predicates that can be used to combine the mean-
ing of this unit with meanings contributed by other units. For the noun “mouse”
(semantic pole of unit mouse-11) the meaning is equal to the following expression:

((mouse ?base-set-81 ?context-67))

The numbers for these variables (as well as for names of other units) are gen-
erated automatically by the FCG-interpreter or semantic processes that formulate
the meaning that needs to be conveyed. Mouse is a predicate which delineates the
set of mice ?base-set-81 as a subset of the context ?context-67. Both argu-
ments ?base-set-81 and ?context-67 can be used in further combinations and
are therefore listed in the args feature. unique-definite has two arguments an
individual and a base-set. It checks or establishes that its base-set has only one
member and it is equal to the individual.

The meaning of the utterance as a whole is distributed over the different units
in the feature structure. The complete meaning of a unit is defined as the union
of the values of the meanings of all its subunits plus its own, as in Copestake et al.
(2006). It is again computed dynamically whenever needed. For the example above,
the complete meaning of unit nominal-phrase-12 is equal to the following set of
predicate argument expressions:

((context ?context-67)

(unique-definite ?indiv-37 ?base-set-81)

(mouse ?base-set-81 ?context-67))

2.6. Representing Categorizations

Grammar uses categorizations to establish abstract associations between
meaning and form (as illustrated in Figure 5). These categorizations typi-
cally take the form of feature-value pairs, such as (number singular) or
(gender masculine), sometimes with binary values, such as (definite +) or
(is-animate -). Categorizations may also take the form of a single predicate or
even relations. The possible categorizations usable in FCG are entirely open. Cate-
gorizations are values of unit-features that indicate what the categorization is about:
prag-cat, sem-cat, syn-cat, phon-cat. Each of these features has a list of cat-
egorizations as its value. The ordering in which they are specified does not matter.

14 L. Steels

For example, the syn-cat in the mouse-unit in Figure 2 includes three syntactic cat-
egorizations: the lexical category lex-cat with value noun, the category number

with value singular, and the category syn-function with value nominal.

!"#$%$&'' ()*+'

,"+#$-.'

/#0"&)*%1#-)$2'

,3$0#.-.'

/#0"&)*%1#-)$2'

Figure 5. The grammar square depicts the different associations between meaning
and form that constructions establish. Meaning can be directly related to form, as
in the case of words, or it is expressed through the intermediary of semantic and
syntactic categorizations.

Because the set of possible categorizations used in a grammar is entirely open,
it is the task of the linguist to identify which ones are necessary and sufficient to
handle the phenomena in the language being investigated. FCG does not propose an
a priori set of universal categorizations, partly because no consensus on this matter
exists among linguists, perhaps because there does not appear to be a universal a
priori set (Haspelmath, 2007).

It is useful to divide categorizations along the lines of traditional levels of anal-
ysis to improve the readability of transient structures. So distinctions are made
between the following unit features on the semantic pole:

1. sem-cat: This unit feature contains all the semantic categorizations. These
are reconceptualizations of the meaning to be expressed, such as the abstract
roles of participants in events (agent, patient, beneficiary, etc.), object dis-
tinctions like countability (count vs. mass), semantic functions (reference,
qualifier, modifier), etc.

2. prag-cat: This unit feature contains all the pragmatic categorizations. They
are related to discourse functions of units, for example whether they are
viewed as the topic of the sentence, part of the foreground or background,
and so on.

A First Encounter with Fluid Construction Grammar 15

The following unit features are used to group the categorizations on the syntactic
pole:

1. syn-cat: This feature groups all the syntactic categorizations, such as the
part of speech of the unit (called the lexical category), syntactic features such
as number, definiteness, (syntactic) case, syntactic function, etc.

2. phon-cat: This feature groups categorizations that are relevant to the mor-
phology, phonology and phonetics of a unit in as far they play a role in gram-
mar, such as whether the stem is regular or irregular, ends on a consonant
cluster, has a rounded vowel in the stem, etc.

The distinction between these different types of categorizations is not always
clear-cut and is up to the grammar designer anyway. For example, the distinction
between count and mass noun is often seen as a syntactic categorization but it could
just as well be considered a semantic categorization, as was done in the example of
“the mouse” shown in Figure 2. It often does not much matter where a categoriza-
tion is placed, because semantic and syntactic processing always go hand-in-hand in
FCG. As a general heuristic, categories that have a clear semantic basis are consid-
ered semantic and those that are clearly conventional are considered syntactic. For
example, ‘agent’ is clearly a semantic categorization which is grounded in the way
the role of a participant in an event is construed whereas ‘nominative’ is clearly a
syntactic categorization, because, even though agents are usually nominative, other
semantic roles could also be mapped into a nominative, as in passive constructions.

3. Constructional Processing

Before discussing the representation of constructions in more detail, it is useful
to take a first look at how constructions are applied in language processing. A simple
nominal phrase is taken as the example, using the lexical and phrasal constructions
described in more detail later in this book (Steels, 2011).

To begin, parsing starts with a unit, by definition called top, that contains all
the information that could be gathered about the utterance by lower level speech
recognition processes: the strings, the intonation and stress patterns, the linear or-
dering of strings, etc. For the phrase “the mouse”, the top would initially at least
contain the information that there are two word strings: “the” and “mouse”, and that
they strictly follow each other. (See Figure 6.) The semantic pole of this unit here
is empty, but it could already contain partial meanings that are anticipated by the
listener based on prior discourse.

16 L. Steels

09/08/10 21:45Babel web interface

Page 2 of 2http://localhost:8000/

top

top

Removed from construction set (4)

Removed from construction set (4)

Added to construction set (5)

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

Meaning:
((context ?context-306) (unique-definite ?indiv-202 ?base-set-322)
(mouse ?base-set-322 ?context-306))

reset

determiner-nominal-phrase-cxn

determiner-nominal-phrase-cxn

determiner-nominal-phrase-cxn

sem syn

top

form

initial

top

((string
mouse-41
"mouse")

(string
the-29
"the")

(meets the-29
mouse-41))

initial

sem syn

* mouse-cxn (t), noun-nominal-cxn,
the-cxn (t), article-determiner-cxn

determiner-

nominal-

phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

nominal-phrase-61

the-29

mouse-41

sem syn
nominal-phrase-61

the-29

mouse-41

Figure 6. The initial top-unit contains in the syntactic pole all information that
could be extracted about the form of the utterance.

The top acts as a kind of input buffer from which information is gradually taken
by constructions to build the transient structure. It is assumed in this paper that
this input buffer is filled with all the information provided by a complete utterance
at once, but of course in a more realistic setting it would be filled gradually as
the individual words sequentially come in. The input buffer is represented as a
unit at the top of the hierarchy of syntactic and semantic subunits so that all the
machinery used for applying constructions can be used both for the top unit and all
its descendants.

A construction is a kind of daemon on the look out for whether it can expand a
transient structure, and, if finds something, it performs the expansion. The first step
(looking out) involves an operation called matching and the second step (expansion)
involves an operation called merging (see Steels & De Beule, 2006, for a more for-
mal definition of matching and merging in FCG). More precisely, matching means
that one pole of a construction is compared with the corresponding pole in the tar-
get (the transient structure being expanded) to see whether there are non-conflicting
correspondents for every unit, feature, and value. Which pole is chosen depends
on whether parsing or production is going on. In the case of parsing, the syntactic
poles are compared. In the case of production, the semantic poles are compared.

For example, if the pattern is equal to
(noun-unit (syn-cat ((lex-cat noun))))

and the target is equal to
(noun-unit (syn-cat ((lex-cat noun))))

A First Encounter with Fluid Construction Grammar 17

then both structures match. But if the target were equal to
(adjective-unit (syn-cat ((lex-cat adjective))))

the pattern would not match because the name of the units are not the same
(noun-unit versus adjective-unit) and the value for lex-cat is different as
well (noun versus adjective). The ordering of subunits or of syn-cat and sem-cat
values does not matter, so that

((number singular) (case nominative))

matches with
((case nominative) (number singular)). Note that in FCG the names

of units play no role whatsoever. We could use the name A-U everywhere where
we use adjective-unit and it would not change the behavior of the system. The
name adjective-unit is only used because it makes it easier for us to read feature
structures.

Merging means that those parts of the other pole of a construction (the one
that was not used in matching) which are missing in the corresponding pole in the
target are added unless they are in conflict in which case the whole operation fails.
Merging performs first a matching process to find out what structures are already
there and whether there is any conflict. For example, if the pattern P is
P = ((noun-unit

(syn-cat (lex-cat noun)

(number singular))))

and the target T is
T = ((noun-unit (syn-cat (lex-cat noun))))

then the result of merging M = merge(P, T) would be
M = ((noun-unit

(syn-cat (lex-cat noun)

(number singular))))

The category number with value singular has been added to T. Merging fails if
there are conflicting correspondents.

Distinguishing matching and merging gives more control over the way a con-
struction is applied and thus makes the definition of constructions easier. It has also
been a key innovation for achieving reversibility, because the semantic and syntactic
poles of a construction take on different roles in parsing and production:

1. When producing, the semantic pole of a construction is matched against the
semantic pole of the transient structure, and, if a match succeeds, the syntactic
pole of the construction is merged with the syntactic pole of the transient
structure. Because merging is blocked when there are conflicts, the syntactic

18 L. Steels

09/08/10 21:45Babel web interface

Page 2 of 2http://localhost:8000/

top

top

Removed from construction set (4)

Removed from construction set (4)

Added to construction set (5)

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

Meaning:
((context ?context-306) (unique-definite ?indiv-202 ?base-set-322)
(mouse ?base-set-322 ?context-306))

reset

determiner-nominal-phrase-cxn

determiner-nominal-phrase-cxn

determiner-nominal-phrase-cxn

sem syn

top

form

initial

top

((string
mouse-41
"mouse")

(string
the-29
"the")

(meets the-29
mouse-41))

initial

sem syn

* mouse-cxn (t), noun-nominal-cxn,
the-cxn (t), article-determiner-cxn

determiner-

nominal-

phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

nominal-phrase-61

the-29

mouse-41

sem syn
nominal-phrase-61

the-29

mouse-41

09/08/10 21:53Babel web interface

Page 2 of 2http://localhost:8000/

top

top

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

Meaning:
((context ?context-306) (unique-definite ?indiv-202 ?base-set-322)
(mouse ?base-set-322 ?context-306))

reset

sem syn

initial

top

sem-subunits

top

(mouse-41)

syn-subunits

form

cxn-applied

application result

status cxn-applied

source
structure top

applied
construction

resulting
structure

top

(mouse-41)

((meets
the-29
mouse-41)

(string
the-29
"the"))

resulting
bindings

((?meaning-659 meaning ((mouse ?mouse-set-166 ?context-306)))
(?form-791 form ((string mouse-41 "mouse")))
(?word-mouse-62 . mouse-41) (?top-unit-1288 . top))

added in
first merge mouse-41

added in
second
merge

mouse-41

cxn supplier :simple-queue

remaining cxns (article-determiner-cxn mouse-cxn the-cxn)

mouse-cxn (t)

sem syn

?top-unit-1288

?top-unit-1288

mouse-cxn (t)

?top-unit-1288

?top-unit-1288

sem syn

?word-mouse-62 ?word-mouse-62

meaning

sem-cat

args

footprints

mouse-41

((mouse
?mouse-set-166
?context-306))

((is-animate +)
(is-countable
+)

(class object))

(?mouse-set-166
?context-306)

(mouse-cxn)

sem syn

form

footprints

syn-cat

mouse-41

((string
mouse-41
"mouse"))

(mouse-cxn)

((lex-cat
noun)

(number
singular))

noun-
nominal-
cxn

the-

cxn

(t)

article-

determiner-

cxn

determiner-

nominal-

phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

nominal-phrase-61

the-29

mouse-41

sem syn
nominal-phrase-61

the-29

mouse-41

!"#$%&'()*

Figure 7. A lexical construction handling the word “mouse” has created a new sub-
unit hanging from the top. It contains in the syntactic pole all additional information
that the construction provides, such as the number and lexical category of the word
and, in the semantic pole, information relevant to meaning, such as the fact that
“mouse” introduces an animate entity.

pole of a construction can still prevent application. Nevertheless, the semantic
pole is the first hurdle before the rest of the construction is examined.

2. When parsing, the syntactic pole of a construction is matched against the
syntactic pole of the transient structure, and, if that succeeds, the semantic
pole of the construction is merged with its semantic pole. Because merging
still tests for conflicts, the semantic pole can prevent application as well, but it
is the syntactic pole which first specifies what constraints need to be satisfied
in order to even start considering a construction.

A First Encounter with Fluid Construction Grammar 19

To return to the parsing process, lexical constructions associate meanings di-
rectly with lexical material (words, morphemes). They examine the top, and, if
there are certain form elements that they can cover, for example they notice a cer-
tain word-string (in the matching phase), they become active and add more infor-
mation to the transient structure built so far (in the merge phase). Typically for
lexical constructions this process includes creating a new unit, hanging it from the
top, encapsulating the information covered in the top by putting it into the new unit,
and adding some more information to that.

Thus there could be a lexical construction that sees the string “mouse”, creates a
new sub-unit for it (here called mouse-41), moves the string “mouse” from the top
to this mouse-41 unit, and adds further syntactic categorizations to the unit, namely
that the lexical category (part of speech) is noun and the number singular. (See
Figure 7.) Information is added to the new unit’s semantic pole as well, namely
that it introduces the predicate mouse with two arguments ?mouse-set-166 and
?context-306, and that its semantic categorizations include being animate and
countable. The semantic and syntactic pole are always displayed separately so the
newly constructed unit appears twice in the graphical representation.

Other lexical constructions do the same sort of thing: They are on the look out
for whether the forms they can cover appear in the input, and, if so, they create
more units and add information about their syntactic and semantic properties. The
ordering of construction applications does not entirely matter. Constructions are
(conceptually) applied in parallel, and a construction triggers as soon as its condi-
tions are satisfied. However, sometimes ordering constraints are imposed to speed
up language processing or to handle phenomena like unmarked forms.

The application of constructions is recursive in the sense that constructions can
trigger on information contained in the units created by other constructions. There
might be a determiner-nominal-construction that looks at the unit created
based on the word “the” and the unit created for the word “mouse” in order to check
whether they occur in a particular ordering, have the same values for number (here
singular) and satisfy other semantic constraints (such as countability). If that is the
case, this construction would build a new unit combining the-29 and mouse-41 and
reorganize the overall structure by encapsulating them as daughter nodes, as shown
in Figure 8. The determiner-nominal construction would not only build syntactic
structures. It would also build additional parts of the meaning that follow from
this combination, for example, that one of the arguments of the article is the same
as one used by the nominal (i.c. ?mouse-set-166). The construction would also

20 L. Steels

percolate semantic categorizations from the constituents to the phrasal parent and
possibly add some new categorizations of its own.

Construction application goes on until no more constructions can be applied.
The meanings contained in all the meaning features of all units in the final tran-
sient structure are collected and interpreted within the present discourse context.
Normally, the top, acting as input buffer, becomes gradually empty as the form
constraints are moved to units lower in the hierarchical structure. When form con-
straints are left over, for example a string is left in the top, it indicates that there
were some aspects of the utterance which could not be treated, perhaps because
there is an unknown word.

A First Encounter with Fluid Construction Grammar 21

0
9

/
0

8
/
1

0
 2

2
:1

6
B
a
b
e
l
w

e
b
 i
n
te

rf
a
c
e

P
a
g
e
 1

 o
f

2
h
tt

p
:/

/
lo

c
a
lh

o
s
t:

8
0

0
0

/

to
p

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(0
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(1
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(0
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(1
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(1
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(2
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(1
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(2
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(2
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(3
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(3
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(4
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(4
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(5
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(4
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(4
)

A
d

d
e

d

 t
o

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(5
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(4
)

R
e

m
o

v
e

d

 f
ro

m

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(4
)

A
d

d
e

d

 t
o

c
o

n
s
tr

u
c

ti
o

n
 s

e
t

(5
)

P
a

rs
in

g
 "

th
e

 m
o

u
s
e

"

A
p

p
ly

in
g

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(5
)

 i
n

 d
ir

e
c

ti
o

n
 !

F
o

u
n

d
 a

 s
o

lu
ti

o
n

in
it
ia

l
s
tr

u
c
tu

re
to

p

a
p

p
lic

a
ti
o

n
p

ro
c
e
s
s

th
e
-c

x
n

 (
t)

th
e
-c

x
n

 (
t)

th
e
-c

x
n

 (
t)

th
e
-c

x
n

 (
t)

m
o

u
s
e

-c
x
n

 (
t)

m
o

u
s
e

-c
x
n

 (
t)

m
o

u
s
e

-c
x
n

 (
t)

m
o

u
s
e

-c
x
n

 (
t)

a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

n
o

u
n

-n
o

m
in

a
l-

c
x
n

n
o

u
n

-n
o

m
in

a
l-

c
x
n

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

?
to

p
-u

n
it
-1

2
9
3

?
to

p
-u

n
it
-1

2
9
3

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

?
to

p
-u

n
it
-1

2
9
3

?
to

p
-u

n
it
-1

2
9
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

s
e
m

s
y
n

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

?
n
o

m
in

a
l-

p
h
ra

s
e

-1
4
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

?
n
o

m
in

a
l-

p
h
ra

s
e

-1
4
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

s
e
m

s
y
n

in
it
ia

l
m

o
u
s
e

-

c
x
n

 (
t)

n
o

u
n

-
n
o

m
in

a
l-

c
x
n

th
e
-

c
x
n

(t
)

a
rt

ic
le

-

d
e
te

rm
in

e
r-

c
x
n

to
p

s
y
n

-s
u
b

u
n
it
s

fo
rm

s
u
c
c
e
e
d

e
d

,
c
x
n

-a
p

p
lie

d

a
p

p
lic

a
ti
o

n
 r

e
s
u
lt

s
ta

tu
s

c
x
n
-
a
p
p
l
i
e
d

s
o

u
rc

e
s
tr

u
c
tu

re

to
p

(
t
h
e
-
2
9

m
o
u
s
e
-
4
1
)

(
(
m
e
e
t
s

t
h
e
-
2
9

m
o
u
s
e
-
4
1
)
)

a
p

p
lie

d
c
o

n
s
tr

u
c
ti
o

n

re
s
u
lt
in

g
s
tr

u
c
tu

re

d
e

te
rm

in
e

r-
n

o
m

in
a

l-
p

h
ra

s
e

-c
x
n

m
e
a
n
in

g

a
rg

s

s
e
m

-c
a
t

fo
o

tp
ri
n
ts

m
o

u
s
e

-4
1 (
(
m
o
u
s
e

?
m
o
u
s
e
-
s
e
t
-
1
6
6

?
c
o
n
t
e
x
t
-
3
0
6
)
)

(
?
m
o
u
s
e
-
s
e
t
-
1
6
6

?
c
o
n
t
e
x
t
-
3
0
6
)

(
(
c
l
a
s
s

o
b
j
e
c
t
)

(
i
s
-
a
n
i
m
a
t
e

+
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)

(
s
e
m
-
f
u
n
c
t
i
o
n

i
d
e
n
t
i
f
i
e
r
)
)

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

m
e
a
n
in

g

a
rg

s

s
e
m

-c
a
t

fo
o

tp
ri
n
ts

th
e
-2

9

(
(
u
n
i
q
u
e
-
d
e
f
i
n
i
t
e

?
i
n
d
i
v
-
2
0
2

?
b
a
s
e
-
s
e
t
-
3
2
2
)
)

(
?
i
n
d
i
v
-
2
0
2

?
b
a
s
e
-
s
e
t
-
3
2
2
)

(
(
d
e
t
e
r
m
i
n
a
t
i
o
n

d
e
f
i
n
i
t
e
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)

(
s
e
m
-
f
u
n
c
t
i
o
n

r
e
f
e
r
e
n
c
e
)
)

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

s
e
m

s
y
n

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

th
e
-2

9 (
(
s
t
r
i
n
g

t
h
e
-
2
9

"
t
h
e
"
)
)

(
(
i
s
-
d
e
f
i
n
i
t
e

+
)

(
n
u
m
b
e
r

?
s
i
n
g
-
o
r
-
p
l
u
r
a
l
-
6
1
)

(
l
e
x
-
c
a
t

a
r
t
i
c
l
e
)

(
s
y
n
-
f
u
n
c
t
i
o
n

d
e
t
e
r
m
i
n
e
r
)
)

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

m
o

u
s
e

-4
1

(
(
s
t
r
i
n
g

m
o
u
s
e
-
4
1

"
m
o
u
s
e
"
)
)

(
(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
l
e
x
-
c
a
t

n
o
u
n
)

(
s
y
n
-
f
u
n
c
t
i
o
n

n
o
m
i
n
a
l
)
)

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

?
to

p
-u

n
it
-1

2
9
3

?
to

p
-u

n
it
-1

2
9
3

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

?
to

p
-u

n
it
-1

2
9
3

?
to

p
-u

n
it
-1

2
9
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

s
e
m

s
y
n

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

?
n
o

m
in

a
l-

p
h
ra

s
e

-1
4
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

?
n
o

m
in

a
l-

p
h
ra

s
e

-1
4
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

fo
o

tp
ri
n
ts

m
e
a
n
in

g

th
e
-2

9

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

th
e
-2

9

0
9
/
0
8
/
1
0
 2

2
:1

2
B
a
b
e
l
w

e
b
 i
n
te

rf
a
c
e

P
a
g
e
 2

 o
f

2
h
tt

p
:/

/
lo

c
a
lh

o
s
t:

8
0
0
0
/

to
p

a
p

p
lie

d
c
o

n
s
tr

u
c
ti
o

n
s

re
s
u
lt
in

g
s
tr

u
c
tu

re

to
p

M
e
a
n
in
g
:

(
(
c
o
n
t
e
x
t

?
c
o
n
t
e
x
t
-
3
0
6
)

(
u
n
i
q
u
e
-
d
e
f
i
n
i
t
e

?
i
n
d
i
v
-
2
0
2

?
b
a
s
e
-
s
e
t
-
3
2
2
)

(
m
o
u
s
e

?
b
a
s
e
-
s
e
t
-
3
2
2

?
c
o
n
t
e
x
t
-
3
0
6
)
)

re
s
e
t

?
to

p
-u

n
it
-1

2
9
3

?
to

p
-u

n
it
-1

2
9
3

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h
ra

s
e

-c
x
n

?
to

p
-u

n
it
-1

2
9
3

?
to

p
-u

n
it
-1

2
9
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

s
e
m

s
y
n

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

?
n
o

m
in

a
l-

p
h
ra

s
e

-1
4
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

?
n
o

m
in

a
l-

p
h
ra

s
e

-1
4
3

?
d

e
te

rm
in

e
r-

u
n
it
-1

2
3

?
n
o

m
in

a
l-

u
n
it
-1

6
7

a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

th
e
-c

x
n

 (
t)

n
o

u
n

-n
o

m
in

a
l-

c
x
n

m
o

u
s
e

-c
x
n

 (
t)

m
e
a
n
in

g

s
e
m

-s
u
b

u
n
it
s

fo
o

tp
ri
n
ts

a
rg

s

s
e
m

-c
a
t

n
o

m
in

a
l-

p
h
ra

s
e

-6
1

(
(
c
o
n
t
e
x
t

?
c
o
n
t
e
x
t
-
3
0
6
)
)

(
m
o
u
s
e
-
4
1

t
h
e
-
2
9
)

(
d
e
t
e
r
m
i
n
e
r
-
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
c
x
n
)

(
?
i
n
d
i
v
-
2
0
2

?
c
o
n
t
e
x
t
-
3
0
6
)

(
(
s
e
m
-
f
u
n
c
t
i
o
n

r
e
f
e
r
r
i
n
g
)
)

fo
o

tp
ri
n
ts

m
e
a
n
in

g

s
e
m

-c
a
t

a
rg

s

th
e
-2

9

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

(
(
u
n
i
q
u
e
-
d
e
f
i
n
i
t
e

?
i
n
d
i
v
-
2
0
2

?
b
a
s
e
-
s
e
t
-
3
2
2
)
)

(
(
d
e
t
e
r
m
i
n
a
t
i
o
n

d
e
f
i
n
i
t
e
)

(
s
e
m
-
f
u
n
c
t
i
o
n

r
e
f
e
r
e
n
c
e
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)
)

(
?
i
n
d
i
v
-
2
0
2

?
b
a
s
e
-
s
e
t
-
3
2
2
)

fo
o

tp
ri
n
ts

m
e
a
n
in

g

s
e
m

-c
a
t

a
rg

s

m
o

u
s
e

-4
1

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

(
(
m
o
u
s
e

?
b
a
s
e
-
s
e
t
-
3
2
2

?
c
o
n
t
e
x
t
-
3
0
6
)
)

(
(
i
s
-
a
n
i
m
a
t
e

+
)

(
c
l
a
s
s

o
b
j
e
c
t
)

(
s
e
m
-
f
u
n
c
t
i
o
n

i
d
e
n
t
i
f
i
e
r
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)
)

(
?
b
a
s
e
-
s
e
t
-
3
2
2

?
c
o
n
t
e
x
t
-
3
0
6
)

s
e
m

s
y
n

fo
rm

s
y
n

-s
u
b

u
n
it
s

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

n
o

m
in

a
l-

p
h
ra

s
e

-6
1

(
(
m
e
e
t
s

t
h
e
-
2
9

m
o
u
s
e
-
4
1
)
)

(
m
o
u
s
e
-
4
1

t
h
e
-
2
9
)

(
(
i
s
-
d
e
f
i
n
i
t
e

+
)

(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
p
h
r
a
s
e
-
t
y
p
e

n
o
m
i
n
a
l
-
p
h
r
a
s
e
)
)

(
d
e
t
e
r
m
i
n
e
r
-
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
c
x
n
)

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

th
e
-2

9

(
(
s
t
r
i
n
g

t
h
e
-
2
9

"
t
h
e
"
)
)

(
(
i
s
-
d
e
f
i
n
i
t
e

+
)

(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
l
e
x
-
c
a
t

a
r
t
i
c
l
e
)

(
s
y
n
-
f
u
n
c
t
i
o
n

d
e
t
e
r
m
i
n
e
r
)
)

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

m
o

u
s
e

-4
1

(
(
s
t
r
i
n
g

m
o
u
s
e
-
4
1

"
m
o
u
s
e
"
)
)

(
(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
l
e
x
-
c
a
t

n
o
u
n
)

(
s
y
n
-
f
u
n
c
t
i
o
n

n
o
m
i
n
a
l
)
)

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

!
"
#$
%
&
'
$(
)%
*

Fi
gu

re
8.

To
p:

tr
an

si
en

t
st

ru
ct

ur
e

af
te

r
ap

pl
ic

at
io

n
of

le
xi

ca
l

co
ns

tr
uc

tio
ns

fo
r

“t
he

”
an

d
“m

ou
se

”.
B

ot
to

m
:

tr
an

si
en

ts
tr

uc
tu

re
af

te
r

th
e

de
te

rm
in

er
-n

om
in

al
co

ns
tr

uc
tio

n
ha

s
ap

pl
ie

d.
Th

is
co

ns
tr

uc
tio

n
ch

ec
ks

fo
r

va
ri

ou
s

sy
nt

ac
tic

an
d

se
m

an
tic

pr
op

er
tie

s
an

d
th

en
bu

ild
s

a
no

m
in

al
ph

ra
se

w
ith

th
e

un
its

fo
r

“t
he

”
an

d
“m

ou
se

”
as

su
bu

ni
ts

.

22 L. Steels

FCG does not see the task of language processing as checking whether a sen-
tence is grammatical. The goal is to come up with the best possible interpretation
given the input and all available constructions. It is quite common in natural dia-
logue that some words are unknown or not well recognized, or that a phrase has not
been built correctly by the speaker or a construction has been stretched to the limit.
Consequently there are often gaps and difficulties to build a complete well-formed
structure. Nevertheless, listeners can usually interpret such sentences by relying on
the context and tacit background knowledge.

The production process runs in an entirely analogous way, except that the top
now contains all information about the meaning that the speaker wants to express.
Therefore, it acts again as an input buffer, and, if meanings are left in the seman-
tic pole of the top at the end of processing, it indicates the presence of a problem:
possibly words were missing to express some meanings, or grammatical construc-
tions were missing or could not be applied. Constructions still apply by a process
of matching and merging, but the poles are reversed:

1. Matching: The semantic pole of the construction is matched against the tran-
sient structure built so far.

2. Merging: The match is successful, and information from the syntactic pole is
merged in with the transient structure built so far.

Usually lexical constructions trigger first. They are on the look out for the pres-
ence of certain meanings, and, if they find them, they create new subunits which
encapsulate these meanings and add syntactic and semantic information to them.
The lexicon is thus primary, both in parsing and production. If the speaker does not
know any grammar but has already an adequate lexicon, an utterance could already
be produced by rendering the bare words in a random order.

Grammatical constructions build further on the lexical units, covering
additional aspects of meaning that are expressed grammatically and inte-
grating information already contained in other units. For example, the
determiner-nominal-construction triggers if it finds units for a determiner
and nominal that satisfy specific semantic and syntactic properties, and it then adds
more form constraints, namely that the constituents have to follow each other in the
final sentence. Thus, constraints on the form of an utterance are progressively col-
lected, based on the meaning that needs to be expressed and the rest of the structure
built so far. This process goes on until no more constructions can be applied. At
that point there is hopefully enough information available in the syntactic poles of

A First Encounter with Fluid Construction Grammar 23

all the units so that a concrete utterance can be constructed. Of course it may be
possible that certain constructions are missing, but there could nevertheless still be
enough information to produce sentence fragments that might be understood by an
intelligent listener.

4. Representing Constructions

In this section we begin to look in more detail at the way constructions are
defined in FCG. The representational tools that we have seen already for transient
structures are extended to be able to define constructions, which means that they
are made more abstract using variables, special operators, and ways to deal with
hierarchical structure.

4.1. Basics

A construction has fundamentally the same structure as a transient structure.
It contains a set of units and features associated with each of these units. They
are decomposed into a semantic and a syntactic pole and all the conventions in-
troduced earlier for transient structures apply, including which unit-features may
appear (syn-subunits, form, syn-cat, etc.) and what their possible values may
be.

There is a general function called def-cxn used in the following way to define
a construction:

(def-cxn name parameters
semantic-poles
<-->

syntactic-poles)

The name is the name of the construction. The parameters specify properties
of constructions not discussed in this introductory chapter. Below is an example of
a possible construction called mouse-cxn, which is in fact entirely similar to the
transient structures discussed earlier:

(def-cxn mouse-cxn ()

((mouse-unit

(meaning ((mouse mice-set context)))

(args (mice-set context))

(sem-cat

((is-animate +) (class object)

24 L. Steels

(sem-function identifier) (is-countable +)))))

<-->

((mouse-unit

(form ((string mouse-unit "mouse")))

(syn-cat

((number singular) (lex-cat noun)

(syn-function nominal))))))

Although constructions strongly resemble transient structures, they must now
be made more abstract to allow matching and merging with the relevant transient
structures. Simply leaving out details creates this effect. For example, a di-transive
construction defines a pattern of syntactic usage on the syntactic pole but says al-
most nothing about the internals of the constituents involved, except that they are
nominal phrases. FCG has two additional mechanisms for achieving abstraction,
the first of which is based on the use of variables. The second consists of operators
that allow a more refined way to specify how feature values have to match and how
they have to merge.

4.2. Variables in FCG

FCG uses logic variables for addressing a part of a structure, whether this is
a unit name, a feature-value pair, a set of units, or the value of a feature. FCG-
variables are denoted by putting a question-mark in front of the variable name, as
in ?unit or ?tense. The mouse-cxn can thus be made more abstract by using
variables for the unit-names, so that the construction will match with any unit that
matches with its features, and variables for the arguments in the meaning. (All items
made variable are in bold.)

(def-cxn mouse-cxn ()

((?mouse-unit
(meaning ((mouse ?mice-set ?context)))
(args (?mice-set ?context))
(sem-cat

((is-animate +) (class object)

(sem-function identifier) (is-countable +)))))

<-->

((?mouse-unit
(form ((string ?mouse-unit "mouse")))

(syn-cat

A First Encounter with Fluid Construction Grammar 25

((number singular) (lex-cat noun)

(syn-function nominal))))))

An FCG-variable functions like a variable in mathematics or computer program-
ming. It can become bound to a particular value and later be used to refer to this
value. The binding is not based on an explicit assignment but occurs as a side effect
of the matching process:

When two structures are matched and an unbound variable is encoun-
tered in the pattern or target, then this variable gets bound to the element
occurring in the same position in the pattern resp. target. If the vari-
able is already bound, then the element in the same position must be
equal to the binding of the variable. If both are variables, then these
variables are considered to be equal, making them equal for the rest of
the matching process.

For example, if the pattern is equal to (gender ?gender) and the target structure is
equal to (gender feminine), then after matching these two structures, ?gender
has become bound to feminine. If the same variable occurs somewhere later in
the pattern it is considered to be equal to feminine. Variables may be bound to
other variables. For example, if the pattern is equal to (gender ?gender) and the
target structure equal to (gender ?unknown-gender), then after matching these
two structures, ?gender has become bound to ?unknown-gender. Further on, if
any one of these two gets bound to a value, the other one is bound as well.

The behavior of variables in merging is as follows:

When two structures are merged and a variable is encountered in the
pattern or target, then this variable is replaced by its binding. When a
variable is unbound, the variable is left as is. When a variable is bound
to another variable, then both are replaced by the same new variable.

For example, suppose that ?gender is bound to feminine, then if (gender

?gender) occurs in the transient structure being merged, it will appear as (gender
feminine). The merging of two structures may give rise to new variable bindings
which are then used in merging. For example, if (gender feminine) occurs in the
target structure and (gender ?gender) in the pattern, then ?gender will become
bound to feminine as part of the merging process, if this variable occurs later again,
?gender will considered to have been bound to feminine.

Variables may occur anywhere in constructions as well as in transient structures.
Their most obvious role is to act as slots that are filled in the matching phase by

26 L. Steels

information from a transient structure and instantiated in the merge phase. For
example, the unit names in constructions are always variables so that they can get
bound to those units in a transient structure whose features and values match with
the ones in the construction. The conditional pole (the semantic pole in production
or the syntactic pole in parsing) establishes bindings, which are then used to retrieve
their correspondents in the contributing pole (the syntactic pole in production and
the semantic pole in parsing).

Bindings can come from either one of the two structures being matched or
merged, just as in logic-style unification. The FCG-interpreter takes care that vari-
ables of pattern and target do not get confused, by renaming all variables in feature
structures before they get matched and merged. It is entirely possible to bind one
variable to another variable, producing the consequence that their future bindings
must be equal. For example, when matching the structure

S = (syn-subunits (?adjective ?noun))

with
T = (syn-subunits (adjective-brown ?some-noun)),

the variable ?adjective gets bound to adjective-brown, and the variable ?noun gets
bound to another variable ?some-noun . When these two structures are merged it produces

M = (adjective-brown ?noun-var)

The bound variable is replaced by its binding and a single (new) variable (here called
?noun-var) has been introduced to replace the two variables that were equal.

The possibility that variables can be bound to other variables has many
utilities. For example, it can be used to link together meanings contributed
by individual units. Suppose the adjective brown contributes the meaning
(brown ?referent-1) and the noun table contributes the meaning (table

?referent-2) then the adjectival-nominal construction can link these meanings
together by binding ?referent-1 to ?referent-2. During merging, the variables
are then replaced by a single new variable, as in

((brown ?referent-3) (table ?referent-3)).
This example illustrates that transient structures may also contain variables, which
is not only useful for handling compositional semantics but also for leaving cer-
tain syntactic or semantic categorizations unspecified until enough information is
available to make a decision. For example, it is possible in language production to
enforce an agreement constraint between a determiner and a nominal for number
without knowing yet what the value for number is going to be, simply by using the
same variable for the value of the category in the units for the article and the noun.

A First Encounter with Fluid Construction Grammar 27

See van Trijp (2011) later in this book for illustrations on how this functionality can
be used for handling complex agreement phenomena.

4.3. Operators

Using variables is one way in which constructions can become more abstract.
Another is namely by specifying in more detail which aspects of a feature-value
pair have to match and how, so that some parts can be ignored or so that possible
conflicts can be more clearly identified. Typically, matching has to be complete
and precise, including the ordering of the elements, but the following operators can
override that:

1. (== element1 ... elementn): The includes-operator specifies that the
value in the target should include the elements element1, ... , elementn, but
the target can contain more elements and the ordering no longer matters.

2. (==1 element1 ...): The uniquely-includes-operator specifies that each of
the elements should occur in the target, which may still include more ele-
ments, but that there should only be one value for the same feature. Again the
ordering of the elements no longer matters. This information not only helps
the matcher by avoiding consideration of unnecessary additional hypotheses,
it also impacts merging, because without this operator the additional category-
value pair would simply be added even if another value already is present.

3. (==0 element1 ... elementn): The negation (or excludes-operator) speci-
fies that the elements should not occur in the target. In this way, a construction
is able to check for example whether the transient structure already contains
a footprint left by the same or another construction that should prevent its
further application.

Using these elements, the “mouse” construction shown earlier can now be made
even more abstract (changes are in bold):

(def-cxn mouse-cxn ()

((?mouse-unit

(meaning (== (mouse ?mice-set ?context)))

(args (?mice-set ?context))

(sem-cat

(==1 (is-animate +) (class object)

(sem-function identifier) (is-countable +)))))

28 L. Steels

<-->

((?mouse-unit

(form (== (string mouse-unit "mouse")))

(syn-cat

(==1 (number singular) (lex-cat noun)

(syn-function nominal))))))

The values of meaning and form use the includes-operator ==, because the
meaning must include the expression (mouse ?mice-set ?context) but may
contain other expressions, and the form must include the string ”mouse” but perhaps
other form constraints. For example, if the utterance “the black mouse” is being pro-
cessed the top-unit will contain also information that there is a string “the” and a
string “black” and that there is an ordering constraint between them. mouse-cxn

is however only interested in the string “mouse”. The semantic and syntactic cate-
gorizations use the uniquely-includes operator ==1, because each of their elements
should have specific single values. Number can only be singular, lex-cat can
only be noun, syn-function can only be nominal.

4.4. Hierarchical Structure

Feature structures, matching and merging, and logic variables are all quite stan-
dard representational mechanisms in Artificial Intelligence and Computational Lin-
guistics, and algorithms for implementing them efficiently can be found in common
textbooks (see for example Norvig (1992)). FCG packages these mechanisms in
a way that they are adapted to represent and process complex transient structures
and constructions. What is undoubtedly less common is the way FCG builds and
manipulates hierarchical structures, which is done with a single powerful structure-
building operator, known as the J-operator.

The J-operator has three arguments and performs two functions. The arguments
are: a daughter-unit, a parent-unit, and possibly a set of pending-subunits. These
are either specified with concrete names or with variables that have been bound else-
where in the matching or merging process. When the daughter-unit is an unbound
variable at the time of merging, a new unit will be created for it.

The first function of the J-operator is to hang the daughter-unit from the parent-
unit by changing the value of the syn-subunits or sem-subunits slot of the
parent-unit. If there are pending-subunits, these will then be attached from the
daughter-unit. For example, a lexical construction typically must match in produc-
tion with some part of the meaning to be expressed, and, if that is the case, the

A First Encounter with Fluid Construction Grammar 29

construction creates a new unit containing the relevant word form in its syntactic
pole and the meaning being covered in the semantic pole. The same construction
performs a mirror operation in parsing, by matching with some word form observed
in the input and then creating a new unit with a syntactic pole and a semantic pole.

Secondly, the J-operator can associate additional information with the daughter-
unit. A lexical construction might want to associate syntactic categorizations with
the new unit it created for the word stem (such as lexical categories, gender, number,
etc.) as well as semantic categories (for example that the word introduces a motion-
event or an inanimate object). If this information is already present, so much the
better. If there is a conflict, the construction stops further application.

Units governed by the J-operator can occur in both poles of a construction. Con-
sequently, a construction typically has a quadripartite structure. Each pole may con-
tain units that are governed by a J-operator, further called J-units, and units that are
required to be part of the existing structure, further called conditional units. These
additions are illustrated with an expanded version of the lexical construction for
“mouse” which now models the behavior sketched in section 3 (additions are in
bold). The construction matches with meanings in production or forms in parsing
which are present in the top-unit and it builds a new unit hanging from the top which
contains the semantic and syntactic categorizations (as shown in Figure 7).

(def-cxn mouse-cxn ()

((?top-unit

(meaning (== (mouse ?mice-set ?context))))

((J ?mouse-unit ?top-unit)
(args (?mice-set ?context))
(sem-cat

(==1 (is-animate +)
(class object) (is-countable +)))))

<-->

((?top-unit

(form (== (string mouse-unit "mouse"))))

((J ?mouse-unit ?top-unit)
(syn-cat

(==1 (number singular) (lex-cat noun))))))

Note that the name ?top-unit is used here but this is only because often the
construction operates with the top-unit of a transient structure. We could have used
any other name for the variable that gets bound to ?top-unit. Names of variables
are chosen for readability but the name itself has no semantics attached to it.

30 L. Steels

The application of constructions in parsing or production can now be defined
more clearly:

• When producing, the conditional units of the semantic pole of a construction
are matched against their correspondents in the transient structure, but the J-
units are ignored. If a match succeeds, the J-units of the semantic pole are
merged with the semantic pole of the transient structure, followed by the syn-
tactic pole of the construction merging with the syntactic pole of the transient
structure (both the J-units and the conditional units).

• When parsing, the conditional units of the syntactic pole of a construction
are matched against their correspondents in the syntactic pole of the transient
structure, but the J-units are ignored. If a match succeeds, the J-units of the
syntactic pole are merged with the syntactic pole of the transient structure,
and all units of the semantic pole of the construction are merged with the
semantic pole of the transient structure.

The process by which the mouse-construction gets applied begins with the fol-
lowing initial transient structure in parsing, with the semantic pole of the top still
empty (See Figure 6):

((top))

<-->

((top

(form

((string mouse-41 "mouse")

(string the-29 "the")

(meets the-29 mouse-41)))))

Matching the syntactic pole of the mouse-construction with this transient struc-
ture yields the bindings (?mouse-unit . mouse-41) (?top-unit . top).
After merging, the syntactic pole of the transient structure is as follows:

((top

(syn-subunits (mouse-41))

(form

((string mouse-41 "mouse")

(string the-29 "the")

(meets the-29 mouse-41))))

(mouse-41

(syn-cat

((lex-cat noun) (number singular)))))

A First Encounter with Fluid Construction Grammar 31

After the semantic pole of the construction is merged, the following semantic
pole is created:

((top

(sem-subunits (mouse-41))

(meaning ((mouse ?base-set-322 ?context-306))))

(mouse-41

(args (?base-set-322 ?context-306))

(sem-cat

((is-animate +) (class object)

(is-countable +)))))

The meaning feature from the mouse-construction has been merged into the
meaning feature of top, and args and sem-cat features have been added to the
mouse-unit. This operation was illustrated in Figure 7.

The J-operator is made more versatile by introducing a way to tag parts of a
feature structure so that they can be moved somewhere else in the hierarchy. Lex-
ical constructions typically remove part of what they covered in the top-unit and
encapsulate it in the unit they created, so that other constructions would not trigger
to express this meaning or cover the same forms. FCG does this operation with a
tagging operator. The tagging operator written as tag has two arguments: a vari-
able, known as the tag-variable, and a set of features and values that will be bound
to the tag-variable. The normal matching process is still used to check whether the
features and values match. If a tag-variable re-occurs inside a unit governed by a
J-operator, then the structure is moved from its old position to its new position.

This process is illustrated in the following further refinement of the mouse-
construction (additions are in bold):

(def-cxn mouse-cxn ()

((?top-unit

(tag ?meaning
(meaning (== (mouse ?indiv)))))

((J ?mouse-unit ?top-unit)

?meaning
(args (?mice-set ?context))

(sem-cat

(==1 (is-animate +) (class object)

(is-countable +)))))

<==>

((?top-unit

32 L. Steels

09/08/10 23:02Babel web interface

Page 2 of 2http://localhost:8000/

top

queue

applied
constructions

resulting
structure

top

Meaning:
((context ?context-306) (unique-definite ?indiv-202 ?base-set-322)
(mouse ?base-set-322 ?context-306))

reset

initial

top

top

application result

status cxn-applied

source
structure top

applied
construction

resulting
structure top

resulting
bindings

((?meaning-659 meaning
((mouse ?mouse-set-166 ?context-306)))

(?form-791 form ((string mouse-41 "mouse")))
(?word-mouse-62 . mouse-41) (?top-unit-1288 . top))

added in
first merge mouse-41

added in
second
merge

mouse-41

cxn supplier :simple-queue

remaining cxns (article-determiner-cxn mouse-cxn the-cxn)

sem syn

tag ?meaning-659

footprints

?top-unit-1288

(meaning
(==
(mouse
?mouse-set-166
?context-306)))

(==0 mouse-cxn)

footprints

tag ?form-791

?
top-
unit-
1288

mouse-cxn (t)

?top-unit-1288

(==0 mouse-cxn)

(form
(==
(string
?word-mouse-62
"mouse")))

?
top-
unit-
1288

sem syn

args

sem-cat

footprints

?word-mouse-62

! ?meaning-659

(?mouse-set-166
?context-306)

(==1
(is-animate +)
(is-countable
+)

(class
object))

(==1 mouse-cxn)

footprints

syn-cat

?word-mouse-
62

! ?form-791

(==1
mouse-cxn)

(==1
(lex-cat
noun)

(number
singular))

mouse-41
sem syn

mouse-41

noun-
nominal-
cxn

the-

cxn

(t)

article-

determiner-

cxn

determiner-

nominal-

phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

nominal-phrase-61

the-29

mouse-41

sem syn
nominal-phrase-61

the-29

mouse-41

Figure 9. Example of the graphical display of a construction. The top part shows
the feature structure that the construction is looking for on the semantic and syn-
tactic side. The bottom shows the units that are constructed by the J-operator. The
tag variables are bound in the top part and used in the bottom part.

(tag ?form
(form (== (string ?mouse-unit ”mouse”)))))

((J ?mouse-unit ?top-unit)

?form
(syn-cat

(==1 (lex-cat noun) (number singular))))))

The meaning feature in the semantic pole of the top-unit gets bound to the tag
?meaning and then moved into the mouse-unit. The form feature in the syntactic
pole of the top gets bound to the tag ?form and moved into the syntactic-pole of the
mouse-unit, so that the transient structure after matching and merging becomes:

A First Encounter with Fluid Construction Grammar 33

((top-unit-5

(sem-subunits (mouse-41)))

(mouse-41

(args (?mice-set-2 ?context-306))

(meaning ((mouse ?mice-set-2 ?context-306)))

(sem-cat

((is-animate +) (class object)

(is-countable +)))))

<-->

((top

(syn-subunits (mouse-41))

(form

((string the-29 "the")

(meets the-29 mouse-41))))

(mouse-41

(form ((string mouse-41 "mouse")))

(syn-cat

((lex-cat noun) (number singular)))))

In this paper, several examples of graphical displays of transient structures have
been shown. Constructions have also a graphical display, with an example given
in Figure 9. The top half shows what the constructions expect to be present in the
transient structure (the conditional units), and the bottom half shows what is added
by the J-operator (the J-units).

The J-operator is a very powerful structure building operator. It can create new
units, build and reorganize the hierarchical structure, and add information to exist-
ing or new units. It is the only structural operator used in FCG.

5. Influencing Construction Application

The application of constructions is seldom a simple matter because often more
than one competing construction is applicable. Two constructions are competing
if their triggering conditions are the same, either on the semantic pole in case of
synonymy or on the syntactic pole in case of ambiguity or polysemy. To deal with
this kind of competition, the FCG-interpreter must set up a search space to track
the different chains of possible construction applications.

34 L. Steels

5.1. The Search Space

The constructions which operate sequentially on the same transient structure
form a linear chain. When more than one construction can apply, the chain forks
into different paths, and we get a search tree (see Figure 10). The search space is
the set of all possible nodes in a tree. For example, suppose we have two lexical
constructions for table, one defining table as a piece of furniture and another as an
arrangement in rows and columns and we run these on the input “the table”, then
we get the search tree as shown in Figure 10.

initial
rouge-
cxn (t)

ballon-
cxn (t)

le-
cxn
(t)

adjective-
adjectival-
cxn

noun-
nominal-
cxn

determiner-
cxn

nominal-
adjectival-
cxn

determiner-
nominal-
phrase-cxn

- nominal-adjectival-
cxn

determiner-
cxn

- determiner-cxn noun-nominal-cxn

- noun-nominal-cxn
adjective-adjectival-cxn

determiner-cxn adjective-adjectival-cxn

- determiner-cxn
adjective-adjectival-cxn

noun-nominal-cxn

Figure 10. Graphical representation of the search tree automatically created by the
FCG-system. The linguist can browse through this tree and click on nodes to see
which construction applied and what the state before and after application was.
There are two chains that successfully reached a final state, one for table-as-matrix
and another one for table-as-furniture.

Search arises both in parsing and production. In parsing it arises because most
word forms or syntactic constraints have multiple meanings and functions, and it
is often not possible to make a definite choice until more of the sentence has been
processed. Sometimes it is even necessary to work out multiple interpretations that
will be disambiguated by the context. In production, search arises because there is
usually more than one way to express a particular meaning, and it may not yet be
possible to decide fully on a particular choice until other aspects of the sentence
are worked out. This ambiguity is also why we see false starts, hesitations, and
self-corrections in normal language production.

The search space is potentially explosive. Most words in a language have at least
half a dozen meanings, and the form constraints of many grammatical constructions

A First Encounter with Fluid Construction Grammar 35

are often shared with several other constructions. It is therefore computationally in-
efficient to exhaustively explore a search, and some sort of heuristic search method
must be employed. By default, FCG uses a best-first search method based on scor-
ing each node in the search space. (See the contribution by Bleys et al., 2011, later
in this book). The score is based on the score of the constructions used so far in the
chain, which is in turn based on their success in previous interactions, and on the
degree with which each construction matches with the transient structure built so
far.

The design of lexicons and grammars must take great care of avoiding search
as much as possible. One of the main functions of syntactic and semantic catego-
rizations is precisely to aid language users in avoiding search, which implies that
as many constraints as possible must be included on the syntactic or semantic pole
of constructions so that the best decision can be made as on whether to try out
or proceed with a construction. This process usually involves thinking hard about
the conditions of applicability of a construction and in particular about the interac-
tions between slightly similar but competing constructions. It also requires thinking
about how two constructions are cooperating to achieve a global purpose.

Adding footprints to a transient structure is another technique for avoid-
ing search or the recursive applications of constructions, and it is also a primitive
that can be used for many other issues such as the handling of defaults (see Beuls
(2011)). When a construction applies, it can leave a kind of marker, called a foot-
print, and the application of the construction the second time around gets blocked,
because the construction first checks whether its footprint is already there. Foot-
prints are represented as unit features, attached to the unit concerned.

The problem of infinite application actually occurs with the mouse-construction
shown earlier. This construction builds a new unit that contains the meaning and
the form that was earlier in the top-unit, while respectively producing or parsing.
It can again apply to this newly created unit, and then again to the unit that would
be created from that, and so on. Footprints easily solve this problem, as illustrated
with the following final form of the mouse-construction.

(def-cxn mouse-cxn ()

((?top-unit

(tag ?meaning

(meaning (== (mouse ?indiv))))

(footprints (==0 mouse-cxn)))
((J ?mouse-unit ?top-unit)

?meaning

36 L. Steels

(args (?mice-set ?context))

(sem-cat

(==1 (is-animate +) (class object)

(is-countable +)))

(footprints (==1 mouse-cxn))))
<==>

((?top-unit

(tag ?form

(form (== (string ?mouse-unit "mouse"))))

(footprints (==0 mouse-cxn)))
((J ?mouse-unit ?top-unit)

?form

(syn-cat

(==1 (lex-cat noun) (number singular)))

(footprints (==1 mouse-cxn)))))

The J-unit adds the footprint mouse-cxn to the mouse-unit it is creating and if
the construction applies (again) it first checks to make sure that this footprint is not
there. The same happens both on the semantic and syntactic side.

5.2. Construction Sets and Networks

When dealing with large lexicons and grammars, it is necessary to speed up
the retrieval of those constructions that are potentially relevant, otherwise the FCG-
interpreter would spend all its time just finding constructions that might apply. This
necessary acceleration is done by organizing constructions into different construc-
tion sets, which apply as a group before another set is considered, and by intro-
ducing networks among constructions so that the successful application of one con-
struction can prime others that are known from past processing to be potentially
relevant. These networks can be built up automatically based on the actual usage of
constructions. See Wellens (2011) for a further discussion of these various mech-
anisms and how they optimize construction application and influence the search
process.

6. Templates

It is important to know what constructions look like and how they are processed
in parsing and production. But grammar design will usually not be done at this level,
simply because it would be too complicated and error-prone. Instead, the grammar

A First Encounter with Fluid Construction Grammar 37

designer (and learning algorithms) use templates that capture design patterns that
are needed for the language being studied. Similar approaches are common in other
formalisms which use macros for writing recurrent grammatical patterns (Meurers,
2001). The set of possible templates is open-ended but a set of common default
templates is provided with FCG implementations. This section briefly discusses
what templates look like and how they are used to build constructions. All other
papers in this book use templates and so many more concrete examples will be
given.

A template has a number of slots which can either be unit-features or items that
are translated into aspects of unit-features. The slots consist of symbols preceded
by a semicolon. The general form of a template is as follows:

(template-name construction-name
:slot value
...

:slot value)

The construction-name refers to the construction on which the template operates.
To make it clear that we are dealing with a template, definitions are always drawn
within a box.

Usually there is a template that defines the skeletal outline of a construction and
then other templates build further on this skeleton, adding more features and possi-
ble more units to the semantic or syntactic pole. A new construction can also start
out as a copy of an existing (more abstract) construction to which more elements
are added that further constrain or embellish the construction, thus implementing
inheritance between constructions.

A first example how a skeletal template is called provides the beginnings of a
definition of the lexical construction for “mouse” that was discussed earlier:

(def-lex-skeleton mouse-cxn

:meaning (== (mouse ?mice-set ?context))

:args (?mice-set ?context)

:string "mouse")

The def-lex-skeleton template only requires the grammar designer to specify
the meaning, the word string, and which arguments in the meaning will be available
to link the meaning supplied by the unit to meanings supplied by other units.

38 L. Steels

The def-lex-skeleton template expands the information supplied with its
slots into the following operational definition of the construction. (Elements sup-
plied by the template are in bold):

(def-cxn mouse-cxn ()

((?top-unit

(tag ?meaning

(meaning (== (mouse ?mice-set ?context))))
(footprints (==0 mouse-cxn)))

((J ?mouse-unit ?top-unit)

?meaning

(args (?mice-set ?context))
(footprints (==1 mouse-cxn))))

<==>

((?top-unit

(tag ?form

(form (== (string ?mouse-unit ”mouse”))))
(footprints (==0 mouse-cxn)))

((J ?mouse-unit ?top-unit)

?form

(footprints (==1 mouse-cxn)))))

All the complexities in creating new units and tagging or moving parts of mean-
ing and form are hidden in the template, and the grammar designer only has to
consider the essentials, namely what is the meaning, what are the arguments and
what is the string covered by this lexical construction.

Adding some syntactic and semantic categorizations to this lexical construction
is done with another template called def-lex-cat. It specifies what semantic and
syntactic categories are to be added:

(def-lex-cat mouse-cxn

:sem-cat (==1 (is-animate +)

(is-countable +)

(class object))

:syn-cat (==1 (lex-cat noun)

(number singular)))

The def-lex-cat template is smart enough to work this information into the skele-
tal definition of the mouse construction created earlier. (The parts added by the
template are shown in bold.)

A First Encounter with Fluid Construction Grammar 39

(def-cxn mouse-cxn ()

((?top-unit

(tag ?meaning

(meaning (== (mouse ?mice-set ?context))))

(footprints (==0 mouse-cxn)))

((J ?mouse-unit ?top-unit)

?meaning

(args (?mice-set ?context))

(sem-cat
(==1 (is-animate +) (class object)

(is-countable +)))
(footprints (==1 mouse-cxn))))

<==>

((?top-unit

(tag ?form

(form (== (string ?mouse-unit "mouse"))))

(footprints (==0 mouse-cxn)))

((J ?mouse-unit ?top-unit)

?form

(syn-cat
(==1 (lex-cat noun) (number singular)))

(footprints (==1 mouse-cxn)))))

All the templates that are concerned with the same construction are typically
grouped together in an overarching template. For lexical constructions, this tem-
plate is called def-lex-cxn. An example of the definition of a construction called
table-as-furniture-cxn for the lexical item “table” is:

40 L. Steels

(def-lex-cxn table-as-furniture-cxn

(def-lex-skeleton table-as-furniture-cxn

:meaning

(== (piece-of-furniture ?table-set ?context)

(flat-surface ?table-set))

:args (?table-set ?context)

:string "table")

(def-lex-cat table-as-furniture-cxn

:sem-cat (==1 (is-animate -)

(is-countable +)

(class object))

:syn-cat (==1 (lex-cat noun)

(number singular))))

Clearly this style of defining constructions brings more clarity and is closer to
the more declarative way in which linguists like to study and define constructions.
Later chapters in this book introduce a variety of templates that are now commonly
used in FCG implementations for phrasal constructions, argument structure con-
structions, etc. The development of templates is a very active domain of research
and there is no claim that the templates that will be used later form the definitive
set, and neither that all languages share all templates.

7. Conclusions

This chapter contained some of the basic representational and processing mech-
anisms available in FCG. These mechanisms build further on proposals that have
existed in the computational linguistics literature for decades but use them in novel
ways. Learning FCG comes only from intense practice in using these various repre-
sentational mechanisms and understanding their full impact on language processing.
Often a simple solution only becomes apparent after working out multiple variations
for the same problem. Carefully examining the case studies already carried out by
others and looking at the design patterns captured in templates is a good way to
learn, but mastering FCG requires doing many exercises oneself.

FCG has made a number of different design decisions as compared with other
formalisms for construction grammar. The insistence on bi-directionality, the use of
logic variables for structure sharing, footprints, and the building and expansion of
hierarchical structures with the J-operator are some of the most important character-
istic features of FCG. Whether these mechanisms are sufficient to deal with all the

A First Encounter with Fluid Construction Grammar 41

remarkable phenomena found in human languages is too early to tell. Many more
case studies need to be carried out to confront the formalism with the rich phenom-
ena found in human natural languages. Whether these mechanisms provide the best
solution is also too early to tell. At this stage in the development of (computational)
construction grammar we should explore many avenues and work out many more
concrete case studies to discover the fundamental linguistic representations and op-
erations that could adequately explain how language is processed and learned. At
the same time, the experiments in dialogue, language learning and language evolu-
tion that have already been carried out using FCG attest to the great power of the
formalism and its versatility. They show that the construction grammar perspec-
tive need not be restricted to verbal descriptions of language phenomena only but
can compete with other linguistic frameworks in terms of rigor and computational
adequacy.

Acknowledgements

The research reported here was conducted at the Sony Computer Science Lab-
oratory in Paris and the Artificial Intelligence Laboratory of the Free University of
Brussels (VUB).

References

Baker, Collin, Charles Fillmore, John Lowe (1998). The berkeley framenet project.
In Proceedings of the COLING-ACL. Montreal, Canada.

Beuls, Katrien (2011). Construction sets and unmarked forms: A case study for
Hungarian verbal agreement. In Luc Steels (Ed.), Design Patterns in Fluid Con-
struction Grammar. Amsterdam: John Benjamins.

Bleys, Joris, Kevin Stadler, Joachim De Beule (2011). Search in linguistic pro-
cessing. In Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar.
Amsterdam: John Benjamins.

Carpenter, Bob (2002). The logic of typed feature structures with applications to
unification grammars, logic programs and constraint resolution. Cambridge Uni-
versity Press.

Copestake, Ann, Dan Flickinger, Carl Pollard, Ivan Sag (2006). Minimal recursion
semantics: an introduction. Research on Language and Computation, 3(4), 281–
332.

42 L. Steels

Fanselow, Gisbert (2001). Features, theta-roles, and free constituent order. Linguis-
tic Inquiry, 32(3), 405–437.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, Ivan Sag (1985). Generalized
Phrase Structure Grammar. Harvard University Press.

Haspelmath, Martin (2007). Pre-established categories don’t exist: Consequences
for language description and typology. Linguistic Typology, 11(1), 119–132.

Kay, Martin (1986). Parsing in functional unification grammar. In B.J. Grosz,
K. Sparck-Jones, B. Webber (Eds.), Readings in Natural Language Processing.
Morgan Kaufmann.

Meurers, Detmar (2001). On expressing lexical generalizations in hpsg. Nordic
Journal of Linguistics, 24(2), 161–217.

Norvig, Peter (1992). Paradigms of Artificial Intelligence Programming. Case Stud-
ies in Common Lisp. San Francisco: Morgan Kauffman.

Steels, Luc (2011). A design pattern for phrasal constructions. In Luc Steels (Ed.),
Design Patterns in Fluid Construction Grammar. Amsterdam: John Benjamins.

Steels, Luc (Ed.) (2012). Experiments in Cultural Language Evolution. Amsterdam:
John Benjamins.

Steels, Luc, Joachim De Beule (2006). Unify and merge in fluid construction gram-
mar. In P. Vogt, Y. Sugita, E. Tuci, C. Nehaniv (Eds.), Symbol Grounding and
Beyond: Proceedings of the Third International Workshop on the Emergence and
Evolution of Linguistic Commun, LNAI 4211, 197–223. Berlin: Springer-Verlag.

van Trijp, Remi (2011). Feature matrices and agreement: A case study for Ger-
man case. In Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar.
Amsterdam: John Benjamins.

Wellens, Pieter (2011). Organizing constructions in networks. In Luc Steels (Ed.),
Design Patterns in Fluid Construction Grammar. Amsterdam: John Benjamins.

