
Notice

This paper is the authors’ draft and has now been published officially as:

Steels, Luc and Remi van Trijp (2011). How to Make Construction Grammars Fluid
and Robust. In Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar,
301–330. Amsterdam: John Benjamins.

BibTeX:

@incollection{steels2011fluidity,

Author = {Steels, Luc and {van Trijp}, Remi},

Title = {How to Make Construction Grammars Fluid and Robust},

Editor = {Steels, Luc},

Pages = {301--330},

Booktitle = {Design Patterns in {Fluid Construction Grammar}},

Publisher = {John Benjamins},

Address = {Amsterdam},

Year = {2011}}

How to Make Construction Grammars
Fluid and Robust

Luc Steels and Remi van Trijp

Abstract

Natural languages are fluid. New conventions may arise and there is never
absolute consensus in a population. How can human language users neverthe-
less have such a high rate of communicative success? And how do they deal
with the incomplete sentences, false starts, errors and noise that is common
in normal discourse? Fluidity, ungrammaticality and error are key problems
for formal descriptions of language and for computational implementations
of language processing because these seem to be necessarily rigid and me-
chanical. This chapter discusses how these issues are approached within the
framework of Fluid Construction Grammar. Fluidity is not achieved by a sin-
gle mechanism but through a combination of intelligent grammar design and
flexible processing principles.

1. Introduction

Human languages are inferential communication systems (Sperber & Wilson,
1986) as opposed to being coding systems, which assume that there is no intel-
ligence in the receiver of the message. All the information to be transmitted is
coded explicitly and the main issue, addressed in Shannon’s information theory, is
to code and decode information as efficiently and reliably as possible. Programming
languages, electronic communication protocols, as used on the Internet, or formal
calculi, like first order predicate logic, are examples of coding systems. In contrast,
an inferential communication system assumes an intelligent receiver who is able to
fill in information based on background knowledge, common sense and the shared
local context. The message therefore only needs to provide enough information to
actively be able to reconstruct the content.

2

How to Make Construction Grammars Fluid and Robust 3

The fact that human languages are inferential communication systems gives
them a number of special properties. The first one is that languages can be open-
ended. At any moment the set of available conceptualizations and linguistic con-
ventions can be expanded by speakers if they need to express something that was
not yet conventionally expressible in the language, because hearers are assumed to
be intelligent enough to figure out what was meant and possibly adopt any innova-
tions introduced by speakers. This fluid character of human language helps to make
them adaptive to the needs of language users that keep changing as human societies
evolve and become more complex. Existing conventions also tend to become so
well entrenched that hearers no longer pay enough attention, which then stimulates
speakers to invent novel ways of expressing the same meaning and thus increase
their chance of communicative success.

The second property following from the inferential nature of human languages
is that they can use the same linguistic materials in multiple ways (as for example
illustrated by the common ambiguity and synonymy of word meanings) because an
intelligent listener will nevertheless be able to figure out which meaning is intended.
Multifunctionality, however, is a big headache in language processing because mul-
tiple hypotheses need to be explored both in parsing and production. The danger of
a combinatorial explosion is never far off and is partly avoided by exploitation of
all the relevant linguistic information and by using the context and other knowledge
to constrain the meaning as fast as possible.

Third, human speakers and listeners need not be perfect in their usage of a lan-
guage. The human brain cannot be expected to function without error when pro-
ducing or understanding utterances at a very fast rate. Speaking involves a highly
complex planning process, with speakers often starting in one direction, halting
after an incomplete fragment has been produced, correcting themselves, and then
possibly continuing in another direction. Speaking also involves very complex and
fast articulatory movements that may easily go wrong and it requires rapid access
to linguistic memory that is itself not always reliable. Listening requires first of
all a reconstruction of the speech sounds, which are often hardly detectable in the
input signal because they are only sloppily pronounced and influenced by noise in
the environment. Listening also requires fast retrieval from lexical and grammati-
cal memory to fetch the relevant constructions, handle combinatorial search, track
multiple linguistic structures at different levels in parallel and perform the right in-
ferences to reconstruct the meaning of the utterance. Particularly for fragmented
speech and imprecise formulation, it is very hard, if not impossible, for hearers
to exactly reconstruct the meaning intended by the speaker. Nevertheless, human

4 L. Steels, R. van Trijp

language communication appears to be surprisingly robust against this kind of frag-
mented and errorful input.

Finally, the conventions underlying human natural languages need not be en-
tirely fixed and uniformly shared in a population. Even within the same dialect or
social register (Labov, 1994), there is a lot of variation, which is unavoidable due to
the open-ended nature of human languages. All language users have equal rights to
expand their language, but there is no guarantee that they do this always in exactly
the same way. It therefore takes time before a newly emerging convention spreads
and stabilizes in the population as a whole. Moreover, different language users have
a different history of interactions and different expressive needs, and they individ-
ually have to reconstruct and learn the language of the community and must keep
track of changes made by others, all without a global authority to consult about the
‘right way’ to say something.

These various properties and the issues they raise have puzzled students of lan-
guage for a long time, leading to an extensive literature proposing ways to deal
with fluidity and robustness. Part of this literature comes from the field of discourse
studies, which engages in observations of actual human dialog. The data shows
not only the ungrammaticality and fragmented nature of almost all human spoken
sentences but also that new conventions arise, conventions shift, and they are ne-
gotiated as part of the dialog (Garrod & Anderson, 1987). Historical linguistics
is another source of relevant literature. This field has considered the question as
to how new lexical and grammatical forms originate and how they may become
adapted by a population (see e.g. Hopper, 1991; Heine, 1997). Finally, the issue has
also been considered extensively in computational linguistics because deployment
of real world language processing applications very quickly gets confronted with
errorful and fragmented input and with communicative situations where speakers
stretch conventions or invent new ones on the spot (Fouvry, 2003).

One of the explicit goals of Fluid Construction Grammar is to try and deal with
fluidity and robustness. We do not propose that fluidity is achieved through a sin-
gle mechanism. It is rather a general property like the safety of a car: Almost all
components of a car contribute to its safety, but safety depends not only on the car
itself but also on the behavior of the driver, other cars on the road, and the condi-
tions of the environment. Similarly, fluidity concerns not only the grammars and the
flexibility and versatility of linguistic processing. It depends also on how language
processing is embedded within other cognitive processes and on the cooperative
interactions of speaker and listener.

How to Make Construction Grammars Fluid and Robust 5

The remainder of this chapter discusses first how the architecture of a language
system can be designed to help achieve fluidity, then how individual variation can
be dealt with, and, finally, how application construction in FCG has been made
more flexible. The final section shows various examples taken from implementation
experiments demonstrating concretely how FCG deals with issues related to the
fluidity and robustness of language.

2. System Architecture

For a normal language user, the lexical and grammatical parsing and production
of language sentences is not a goal in itself but a subtask of a more encompass-
ing cognitive system which takes care of many other tasks, including the build-up
and maintenance of world models based on perception and action, the tracking and
management of cooperative activities from which the communicative goals of a par-
ticular speech act get derived, the derivation of common sense facts that are assumed
to be shared background and the articulation and recognition of speech and gesture.
Each of these subtasks produces constraints and partial evidence that can be used to
achieve a successful communicative interaction, but all of them are confronted with
similar issues as discussed in the previous paragraphs: open-endedness, errorful and
incomplete input, resource constraints, individual variation and fluid conventions.
Consequently, failures in handling one subtask have to be compensated for by other
subsystems so that the total is more robust than each component separately. Orches-
trating a tight interaction between all subsystems involved in language is therefore
a first big step towards making a language system capable of handling fluidity and
robustness.

2.1. The Semiotic Cycle

Producing or comprehending sentences requires speakers and hearers to go
through the semiotic cycle shown in Figure 1. The relevant processes take place
against the background of turn-taking and attention sharing behaviors and scripts
monitoring and achieving the dialog.

The processes relevant for the speaker are:

1. Grounding: The first set of processes carried out by both the speaker and the
hearer must maintain a connection between the internal factual memory and
the states and actions in the world that dialog partners want to talk about.
They include segmentation, feature extraction, object recognition, event clas-
sification, object tracking, object manipulation, etc.

6 L. Steels, R. van Trijp

2. Conceptualization: The second set of processes must select what needs to be
said and then conceptualize the world in a way that it can be translated into
natural language expressions which satisfy the communicative goal that the
speaker wants to achieve (Talmy, 2000). For example, if we say “the car is in
front of the tree”, we have conceptualized the tree as having a front which is
directed towards us, and the car as being in between ourselves and this front.

3. Production (also known as verbalization or formulation (Levelt, 1989): This
set of processes takes a semantic structure and turns it through a series of
mappings into a surface form, taking into account the lexical, grammatical,
morphological and phonological conventions of the language as captured by
various constructions.

4. Speech Articulation This set of processes renders a sentence into the fast
movements of the articulatory system required to produce actual speech and
gestures.

sensorimotor
systems

meaning

world
model

goal

conceptualisation

production

world

utterance

reference

sensorimotor
systems

meaning

action
world
model

interpretation

parsing

reference

speaker hearer

Semiotic Cycle

Figure 1. The semiotic cycle summarizes the main processes that the speaker (left)
and the hearer (right) go through. Sentence parsing and production is only one of
the activities within this cycle.

The processes relevant for the speaker are:

How to Make Construction Grammars Fluid and Robust 7

1. Speech Recognition The speech signal needs to be processed through a battery
of signal processing and pattern recognition processes to get a reasonable set
of hypotheses about the speech elements that might be present.

2. Parsing. The hearer uses these data to reconstruct as well as possible the
meaning of the utterance that is transmitted by the speaker. Again, this pro-
cess is highly elaborate due to the complexity of natural language and the
presence of ambiguities.

3. Interpretation. The hearer must then confront the meaning resulting from
the parsing process with his or her own factual memory of the world and
understanding of the dialog context in order to find a correct interpretation
of the utterance that fits with his or her own expectations and observations.
For example, the hearer must retrieve the object in the scene that the speaker
wanted him or her to pay attention to.

4. Grounding. The hearer must therefore also maintain a connection through
perception and action between his or her internal factual memory and the
states of the world, possibly including the mental states of the speaker.

At present we can construct computational models of all aspects of this cycle,
including of the parsing and production processes. More specifically, the FCG sys-
tem discussed in other chapters of this book can act as an embedded system for this
subtask operating within a complete integrated and grounded language system that
contains implementations for all the other processes as well. In fact, FCG was orig-
inally developed for this purpose in order to support experiments in which artificial
agents, instantiated as physical robots, achieve embodied communication (Steels,
2003a).

How can these processes be tightly integrated? The FCG-interpreter has been
designed based on the notion of a task thread, further called task, which governs
the behavior of a set of processes (Steels & Loetzsch, 2010). Each process per-
forms a step in the semiotic cycle and returns a certain process result. The process
may be the analysis of a scene in order to come up with possible segmentations
of objects and actions, the conceptualization of a scene in order to come up with a
conceptualization that could be used to achieve a particular communicative goal, the
application of a set of constructions (for example all morphological constructions
to expand a particular transient structure), the rendering of part of the utterance into
speech articulation and so on.

8 L. Steels, R. van Trijp

There are three possible outcomes of a process. (i) The result could indicate
that the task can carry on with the next step in the sequence of processes associated
with this task. For example, the morphological construction set came up with an
appropriate transient structure which can then be further processed using another
construction set (for example all categorization constructions). (ii) The result could
indicate that there are several ways to continue the comprehension or production
process, which means that the task has to split into several subtasks which each will
explore another hypothesis. In this case, the process result will typically return some
measure indicating how plausible each possible hypothesis is considered to be and,
as explained in the chapter on search (Bleys et al., 2011), which can be used as one
of the criteria for deciding which nodes in the search process will be preferentially
explored. (iii) The result could indicate that a dead end was reached and that this
particular task could not carry out the process given all available evidence.

This task-based architecture has the advantage that multiple hypotheses coming
from different levels of processing can be explored in parallel and all information
that might help to arrive at a coherent hypothesis can be integrated.

2.2. Re-entrance

The next step towards handling fluidity and robustness is to design all the pro-
cesses required for language comprehension and production in such a way that they
are reversible, i.e. that they can be used by processes running in both directions
(from form to meaning or from meaning to form). This is certainly the case for
Fluid Construction Grammar, because constructions are always bi-directional: they
can be used unaltered both in parsing and production. Conceptualization and in-
terpretation processes can be designed in a similar way, so that the process of con-
ceptualization (planning what to say) is based on exactly the same representations
as the process of interpretation. Speech systems can be designed so that they use
analysis by synthesis (the so-called motor theory of speech, Liberman & Mattingly,
1985), which means that listeners segment and recognize speech units in terms of
the articulatory gestures needed to produce them. Further discussion of these other
subsystems is however beyond the scope of the present chapter.

If the reversibility criterion is satisfied, then a particular structure being derived
by a linguistic process moving in a particular direction can be re-entered in its cor-
responding mirror process to see what the consequences are when processing this
structure in the other direction (Steels, 2003b). For example, the process that is
recognizing speech sounds and words can take an initial set of hypotheses and then

How to Make Construction Grammars Fluid and Robust 9

run them backwards, articulating these same words in order to predict what they
should sound like and map these predictions on the incoming sound stream. Alter-
natively, a process performing grammatical analysis by applying constructions can
take the resulting structures and then run them backwards, in order to predict what
the rest of the sentence might look like or to fill in missing gaps. There is abun-
dant evidence from the psychological and neuroscience literature that this kind of
re-entrance and monitoring occurs in human subjects, not only for speech but also
for other subsystems of language processing (Brown & Hagoort, 1991).

Re-entrance is possible at any stage or level. Here are some more examples for
the speaker:

1. The utterance derived from the total set of processes achieving language pro-
duction can be re-entered by invoking the processes achieving language com-
prehension in order to check whether the reconstructed meaning is equal (or
sufficiently compatible) to the one that the speaker originally intended. The
speaker here takes him- or herself as a model of the listener and can thus
self-monitor the possible effect of his or her utterance on the listener.

2. After applying all lexical constructions to perform a first selection of which
words are going to be used to build the final utterance, the speaker could
already re-enter this set of words and simulate the parsing process of a lis-
tener, thus figuring out what meaning would already be derivable without any
further grammar.

3. After having planned what to say by running a set of conceptualization pro-
cesses, the speaker could re-enter the obtained meaning through his or her
own interpretation processes in order to find out whether interpretation of this
meaning would indeed achieve the communicative goal that he or she wanted
to achieve within the given context him- or herself.

Re-entrance is not only useful for the speaker but is equally relevant to the lis-
tener:

1. The listener can take the meaning derived after all comprehension processes
have run and then launch a language production system with this meaning,
thus reconstructing how he or she would have expressed the same information
him- or herself.

2. The listener can pipe transient structures, derived from applying a particular
subset of constructions in parsing, back through the same construction set in

10 L. Steels, R. van Trijp

the reverse direction and thus compute how his or her own set of constructions
would work out the transient structures derived from the speaker’s input.

It is obvious why re-entrance is useful to achieve fluidity and robustness: It al-
lows language users to employ their own inventories to fill in gaps, fix errors, com-
plete partial fragments, etc. For example, if a word or a particular form constraint is
missing, the listener can use re-entrance in order to reconstruct what this might have
been. If the speaker re-enters the utterance he or she is about to produce, he or she
can notice that certain words or phrases are ambiguous or trigger combinatorial ex-
plosions and he or she can then give preference to another path in the search space.
If the listener is confronted with a phrase he or she cannot process syntactically or
semantically, he or she might nevertheless be able to reconstruct the meaning from
the context and other parts of the sentence and then predict which constructions
are missing in his or her own inventory. All these activities are not only possible
but routinely incorporated into computational experiments with Fluid Construction
Grammar. They are implemented by allowing that a task thread evokes re-entrance
processing at critical steps in the process.

2.3. Monitoring with diagnostics

The next step for handling fluidity and robustness is to introduce a facility that
allows for monitoring the outcome of a step in a particular process, by triggering
diagnostics operating over the outcome of a particular processing step. Diagnostics
therefore introduce a meta-level running in parallel with routine processing. (See
Figure 2.)

Here are some concrete examples of such diagnostics:

1. The speaker can have a diagnostic that tests at the end of all production pro-
cesses whether all of the meaning he or she wanted to cover is indeed covered.
If this is not the case, it suggests that his language inventory was missing cer-
tain constructions to express these meanings.

2. The speaker can re-enter the utterance to simulate how the listener would
parse the utterance. He or she can then run a diagnostic to test whether a
significant search space had to be explored, which signals that it might require
too much cognitive effort to comprehend.

3. Another diagnostic could compare the meaning derived from these compre-
hension processes with the meaning that the speaker originally wanted to ex-
press.

How to Make Construction Grammars Fluid and Robust 11

Figure 2. The routine application of constructions during parsing and production is
augmented with meta-level processes performing diagnosis and possibly repairing
problems by extending the inventory of the speaker or the hearer.

4. The hearer can have a diagnostic that tests at the end of all comprehen-
sion processes whether all the form constraints observed in the utterance (all
words, intonation patterns, orderings, morphological markers, etc.) were ef-
fectively used in one way or another to construct the meaning. If that is not
the case, this suggests that certain constructions are missing and that the in-
ventory needs to be expanded or more constraints have to be added to existing
constructions.

5. The hearer can have a diagnostic focusing on whether the expected agreement
relations between constituents of a phrase have all been satisfied. If this is not
the case, this suggests that the speaker has made an error which should be
overruled, or, that the hearer should revise some of the syntactic features he
or she assumed.

Hundreds of such diagnostics can be formulated. Some of them can be very general
whereas others could be fine-grained, focusing on whether particular templates are
correctly applied.

12 L. Steels, R. van Trijp

2.4. Repairs

A problem signaled by a diagnostic is not necessarily the end of that task thread.
If other tasks run in trouble as well, it may become useful to trigger repair strate-
gies that can potentially deal with the problem signaled by the diagnostic. Repairs
might take various forms and depend on whether comprehension or production is
the major target:

1. It is possible that problems arising in comprehension are due to errorful or
fragmented input. In that case, the repair could consist in ignoring the missing
elements or possibly filling them in and to continue processing as best as
possible. It should not trigger any revision of the listener’s inventory.

2. It is possible that problems are due to language variation. The language sys-
tems of speaker and listener are never exactly the same but the listener may
still be able to process the sentence because he has also stored alternatives
(see next section). In this case, renewed exploration of the search space with
paths that had a lower score might still produce valid parses.

3. It is possible that problems are due to the creativity of the speaker who has
stretched the usage of certain constructions in order to express novel mean-
ings or express meanings in novel ways. For example, the speaker could have
coerced an intransitive verb like ”sneeze” to become a ditransitive to express
cause-motion, as in the famous example sentence: ”Adele sneezed the napkin
off the table”.

4. Finally, it is possible that the listener is missing certain constructions to ade-
quately parse or interpret the input sentence, which would be a quite common
occurrence in the early stages of language acquisition but is still required by
mature language users who need to keep up with changes in their language.
In this case, repairs will be much more complex because they have to ex-
pand the listener’s existing inventory. For example, the listener encounters
an unknown word, is able to reconstruct its possible meaning by using inter-
pretation based on partial meaning, context and possibly additional feedback
from the speaker, and can then activate a repair action by introducing a new
lexical construction that associates the word form with the uncovered mean-
ing. Once the lexicon has been extended this way, processing can continue or
restart, producing a complete parse.

Many different repair strategies are useful in language production:

How to Make Construction Grammars Fluid and Robust 13

1. It is possible that not every aspect of the meaning coming out of conceptual-
ization could be covered or that not all semantic and syntactic categorizations
could be expressed explicitly in the surface form. In that case, repair might
consist in ignoring these uncovered items and simply rendering the utterance
based on the form constraints that have already been introduced in the hope
that the listener is flexible and intelligent enough to reconstruct the intended
meaning.

2. However, the speaker can go a step further: when meanings or categorizations
cannot yet be expressed, the speaker might attempt to expand his or her ex-
isting inventory with new constructions based on recruiting existing linguis-
tic materials in novel ways. Complex cognitive operations such as analogy,
blending, or metaphor are all routinely employed by speakers to achieve this,
and the novel constructions that result need to be reconstructed by hearers.

3. A lot of diagnostics operate on the outcome of re-entrance. Even though the
speaker is able to express certain meanings, it could be that the chosen forms
trigger combinatorial explosions, ambiguity or other cognitive difficulties for
the listener. In that case, the speaker might try to repair the communication by
exploring other ways to express the same meanings or by introducing novel
uses of constructions or even entirely new constructions to take care of them.

Diagnostics and repairs are integrated by the FCG-interpreter within the context
of task threads. A particular task will run diagnostics at critical points, for example
after the application of a particular set of constructions. If problems pop up, differ-
ent repair strategies might be considered and one could be run possibly allowing the
relevant task to proceed further.

3. Handling Individual Variation

It is a well established fact that there is enormous variation in the set of con-
structions that members of the same language community employ, posing great
challenges both to language description and to language processing. The observed
variation is caused by two factors:

(i) Language reflects the social strata, age, and regional origins of speakers. Al-
though this is most obvious for speech sounds, we also find, for example, that syn-
tactic features, like gender in French, word order constraints, like the ordering of
the auxiliaries and non-finite verbs in the main clause in Dutch, the use and expres-
sion of syntactic cases, such as the competing “laı́smo-leı́smo-loı́smo” paradigms

14 L. Steels, R. van Trijp

in Spanish, all differ across age, style, social status and regions, even between dif-
ferent neigborhoods of the same city (Fernández-Ordóñez, 1999). Interestingly,
language speakers are often able to recognize these differences and thus identify
the social stratum and regional origins of a speaker. Sometimes they are even able
to imitate them, suggesting that these social markers are part of the knowledge that
speakers have of their language and that constructions must incorporate parameters
for social and dialectal variation as part of their definition. This knowledge can be
represented within the FCG framework in a straightforward way, for example by
labeling all constructions as belonging to a particular dialectal variant.

(ii) The second factor leading to significant variation comes from the fact that
speakers have to reconstruct their language systems individually based on the in-
put available to them and driven by the communicative challenges and semantic
domains that they routinely encounter. Moreover, language users all have the possi-
bility to invent new constructions, and it is improbable that they all hit upon exactly
the same forms to express similar meanings. Often the resulting variation balances
out, as standard modes of expression emerge for novel meanings, but there are in-
termediate states in which different conventions compete with each other until one
emerges as the winner. The remainder of this section focuses on how this kind of
variation is incorporated within the framework of Fluid Construction Grammar.

First of all, it is assumed that each language user stores competing construc-
tions. A construction C1 competes with another construction C2 if both are trigger-
ing in the same circumstances, in other words if both could potentially expand a
given transient structure, but C1 does it in another way than C2. One example of
competing constructions are synonyms. They trigger on the same meaning but use
another word-stem to express that meaning. Other examples are grammatical vari-
ants, such as the use of two different morphemes to express a particular tense or the
use of two different cases (such as dative or genitive) to express the same semantic
role (beneficiary). Each construction has a score which is modeled as a numerical
value between 0.0 and 1.0. The score plays a role in the search process. When
the speaker has to choose between branches based on competing constructions, the
branch created by the construction with the highest score is explored first. Simi-
larly, the hearer prefers to explore a branch based on a construction with a higher
score against competing branches. This ensures that the most preferred construc-
tion (at least according to the state of knowledge of the speaker or the hearer) will
effectively play a role if it leads to a successful conclusion. Only when the choice
for this construction does not work out and the search process has to backtrack, the
construction with a lower score is tried.

How to Make Construction Grammars Fluid and Robust 15

When a new construction is built by a repair strategy, it starts with a default
score δinit . This score is adjusted after every interaction based on the following rule
(first introduced in Steels, 1996):

1. When an interaction is successful, the score of all constructions used is in-
creased by a factor δsuccess.

2. The score of competing constructions is decreased with a factor δinhibit , lead-
ing effectively to a form of lateral inhibition.

3. When an interaction is not successful, then the score of all constructions re-
sponsible for the failure is decreased by a factor δ f ail .

Computer simulations (Steels & Kaplan, 2002) and mathematical proofs
(De Vylder & Tuyls, 2006) have shown that this dynamics not only allows agents
to be flexible in dealing with constructions that they do not prefer themselves, it
also allows a population of agents to reach coherence for their language use, even if
no solutions initially existed and all agents are allowed to invent new constructions
from scratch. (See Figure 3.) This is due to the positive feedback loop between
communicative success and the use of constructions: When a construction has been
part of a successful language interaction, the dialog partners increase the score and
consequently their use of the same construction in similar circumstances increases.
This in turn influences other agents either to acquire this construction if they have
not encountered it before or to increase its chances of later use if they already had
the construction as part of their inventory.

4. Flexibility and Coercion

Tight integration of all processes involved in the semiotic cycle, re-entrance,
meta-level diagnostics and repairs, as well as scoring and lateral inhibition dynam-
ics all help to make language processing more robust and flexible. Yet, there is still
more that can be done, specifically by the non-standard application of constructions
through various repair strategies. By non-standard application we mean that

1. Matching can be made more flexible by allowing that some units or some
syntactic and semantic constraints required by a construction are absent or
incomplete in the transient structure.

2. Merging can be extended by applying it to transient structures which have not
passed the matching phase, thus coercing a transient structure to have certain
properties which are not initially present.

16 L. Steels, R. van Trijp

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

75
00

0

80
00

0

85
00

0

90
00

0

bevuwu
bozopite
centerlft
danuve
fibofure
gauche
links
mamit
mefali
red
rekifini
rotota
rouge
sisibuta
sowuwi
sulima
tonoto
tonozibo
vizonuto
wegirira
wogglesplat
wolf
wopuwido
xesofage
xomove
yaretile
ybgrshapes
yellow

wogglesplat

Figure 3. This graph shows the results of experiments with artificial agents examin-
ing the impact of lateral inhibition dynamics on construction alignment. The x-axis
shows the number of interactions by a population of 500 agents over time. The y-
axis shows the frequency with which competing words are used. After about 5000
games there is a phase transition making one word (”wogglesplat”) dominant.

These operations are powerful mechanisms for dealing with missing elements in
the input (for example, a word form not recognized by the speech recognition sub-
system), with unknown elements (for example a word is encountered that is not yet
part of the lexical inventory of the speaker), with elements used in ways that violate
the hearer’s language system or with novel uses of existing constructions to express
meanings that could otherwise not be expressed. The remainder of this section gives
some concrete examples taken from working experiments.

How to Make Construction Grammars Fluid and Robust 17

4.1. Processing Unknown Words and Meanings

Once language users have built up a repertoire of form-function conventions
of their language, they can exploit this knowledge to make top-down predictions
when they encounter unknown words or when they need to express novel mean-
ings. Through a learning process that is called bootstrapping, they can exploit the
results of these predictions for learning new form-meaning mappings very rapidly.
This section demonstrates how an unknown word can be processed and how this
process forms the basis for syntactic bootstrapping, and briefly discusses how the
same approach can be used for processing new meanings and achieving semantic
bootstrapping.

The starting point of the example is a grammar for lexical and phrasal construc-
tions that is described by the chapter on phrasal constructions in this book Steels
(2011), which is capable of parsing and producing phrasal utterances such as the
mouse or the very green mouse. Next, the language user is confronted with the word
Jabberwock (from Lewis Caroll’s poem Jaberwocky) while parsing the phrasal ut-
terance the very green Jabberwock. The processing example is initialized with the
following configurations:

• Construction-set: Lexical and phrasal constructions are collected in one set.
There is no predefined order of application.

• Goal-tests: There are two goal-tests that determine whether processing is fin-
ished and successful: no-applicable-cxns and no-form-in-top-unit.
The first one simply implies that if no constructions can be applied, process-
ing ends. The second goal-test checks whether all the form elements of the
observed utterance (i.e. every word form and the observed word order) have
been handled during processing. This check considers a form element to be
processed as soon as it is removed from the top-unit and relocated in any other
unit in the transient structure, so the goal-test simply needs to verify whether
there is any form element left in the top-unit of the transient structure.

Figure 4 shows the search tree during routine parsing of the utterance the very
green Jabberwock and the expansion of the final node in that search tree. As can
be seen in the Figure, routine processing is capable of applying the lexical con-
structions for the, very and green, of categorizing them as determiners, adverbs or
adjectives, and of grouping very green in an adverbial-adjectival phrase. However,
the search gets stuck after the application of the determiner-cxn because the goal-
test no-form-in-top-unit fails. As shown in the expanded node, this goal-test

18 L. Steels, R. van Trijp

reports that the string Jabberwock and some word order constraints are left unana-
lyzed in the top-unit.

top

Parsing "the very green Jabberwock"

Applying construction set (13) in direction

No solution found

initial
structure top

application
process

Meaning:
nil

reset

sem syn

initial

very-
cxn
(lex)

adverb-
adverbial-
cxn
(cat)

green-
cxn
(lex)

adjective-
adjectival-
cxn
(cat)

adverbial-
adjectival-
phrase-cxn
(marked-phrasal)

the-
cxn
(lex)

top

top

cxn-applied

application result

status cxn-applied

source
structure

top

applied
construction

resulting
structure

top

resulting
bindings

((?definiteness-13 . definite)
(?unit-name-39 . the-2) (?top-unit-140 . top))

added in
first merge the-2

added in
second
merge

the-2

cxn supplier :simple-queue

remaining cxns nil

goal tests: no-form-in-top-unit, no-applicable-cxns

form in
top
unit

((string jabberwock-2 "Jabberwock")
(meets the-2 adjective-phrase-4)
(meets adjective-phrase-4 jabberwock-2))

determiner-cxn (cat)

the-2

adjective-
phrase-4

green-
2

very-2

sem syn

the-2

adjective-
phrase-4

green-
2

very-2

?top-unit-
140

?unit-name-39

determiner-cxn (cat)

?top-unit-
140

?unit-name-39

?unit-name-
39

sem syn ?unit-
name-39

adjective-
phrase-4

very-2

green-
2

the-2

sem syn

the-2

adjective-
phrase-4

green-
2

very-2

+
+

+
+
+

+
+

Figure 4. Routine processing of the very green Jabberwock reaches a dead end
because the goal-test no-form-in-top-unit fails. Alternative branches in search
are not shown due to space limitations.

The goal-test no-form-in-top-unit can be coupled to a diagnostic that de-
tects forms that remain unanalyzed during parsing. In this instance, the diagnostic
reports to the meta-layer that the unanalyzed form contains a string and two word
order constraints. Since there is an uncovered string, one possible repair is to treat
that string as if it were a lexical item.

The repair proposed here works in a two-legged operation: first, it introduces a
new lexical construction for kick-starting the parsing process, and next, it consoli-
dates the results obtained from processing. The new lexical construction is created

How to Make Construction Grammars Fluid and Robust 19

using a ‘generic’ lexical construction, which is a lexical construction that remains
underspecified for meaning, form or categories through the use of variables. The
use of generic lexical constructions is explored by various grammar formalisms for
increasing robustness, as for example Verbmobil (Wahlster, 2000) and the DELPH-
IN project (www.delph-in.net). In the approach adopted in this paper, a generic
lexical construction is defined using the same templates as for lexical constructions
(see Steels, 2011):

(def-lex-cxn generic-lexical-cxn

(def-lex-skeleton generic-lexical-cxn

:meaning (?unknown-meaning ?set ?context)

:args (?set ?context)

:string ?unknown-string)

(def-lex-cat generic-lexical-cxn

:sem-cat ?sem-cat

:syn-cat ?syn-cat))

The generic lexical construction is never considered during routine processing
because it is so general that it would cause a combinatorial explosion in search, as
it triggers on any string in parsing or any meaning in production. Moreover, the use
of the variables ?sem-cat and ?syn-cat allows the generic construction to interact
with any other construction that requires a sem-cat or syn-cat feature, whatever
their values might be.

In principle, the repair can just insert the generic lexical construction in the
construction-set and continue processing. However, since the current objective
also involves word learning through syntactic bootstrapping, it is better to cre-
ate a new lexical construction that forms the first basis for acquiring the new
word. The new lexical construction is created by copying the generic lexical
construction, which is achieved through the :inherits-from keyword in the
def-lex-cxn template. The construction’s underspecified string is then replaced
by "Jabberwock" through the def-lex-require template, which works analo-
gously to the def-phrasal-require template as defined by Steels (2011):

20 L. Steels, R. van Trijp

(def-lex-cxn jabberwock-cxn

:inherits-from generic-lexical-cxn

(def-lex-require jabberwock-cxn

:cxn-string "Jabberwock"))

Figure 5 shows what happens when the new construction is inserted in the
construction-set: the jabberwock-cxn can immediately be applied, which sub-
sequently triggers the application of the adjectival-nominal-cxn and the
determiner-nominal-phrase-cxn. The expanded node shows the application
of jabberwock-cxn. As can be seen, the transient structure before application is
the same one as where routine processing was blocked before. Now, however, the
new lexical construction creates a new unit for the string "Jabberwock" and fills
this unit with underspecified feature-value pairs.

How can the application of the new construction trigger the application of other
constructions? The first one in line is the adjectival-nominal-cxn, which re-
quires an adjectival and a nominal unit. The first requirement is satisfied by very
green, which was already identified as an adjectival phrase during routine process-
ing. As for the nominal unit, the construction expects the following syn-cat:

(syn-cat
(==1 (number ?number)

(syn-function nominal)))

Since the syn-cat feature of the Jabberwock-unit is underspecified through a
variable, the adjectival-nominal-cxn can simply unify and therefore impose its
own syn-cat onto the Jabberwock-unit. On the semantic pole, the construction
can then impose its semantic constraints as well, including the unit’s sem-function
(identifier) and how its meaning should be linked to the meaning of the adjec-
tival phrase. The adjectival-nominal-cxn in turn provides all the requirements
for triggering the determiner-nominal-phrase-cxn, which groups the whole ut-
terance into a nominal phrase, taking care of agreement and linking of meanings.
At this point, no other constructions apply and all the goal-tests are satisfied, so
parsing was successful despite encountering an unknown word.

Diagnostics and repairs are not only useful for achieving robustness in process-
ing, they also form the basis for learning novel form-function mappings. The sec-
ond part of the repair is to consolidate the outcome of the repaired parsing process

How to Make Construction Grammars Fluid and Robust 21
top

Removed from construction set (14)

Added to construction set (15)

Removed from construction set (14)

Added to construction set (15)

Parsing "the very green Jabberwock"

Applying construction set (15) in direction

Found a solution

initial
structure

top

application
process

jabberwock-cxn (lex)

jabberwock-cxn (lex)

jabberwock-cxn (lex)

jabberwock-cxn (lex)

adjective-phrase-4
very-2

green-2

the-2

sem syn

the-2

adjective-phrase-4
green-2

very-2

initial

top

top

cxn-applied

application result

status cxn-applied

source
structure

top

applied
construction

resulting
structure

top

resulting
bindings

((?meaning-177 meaning
((?unknown-meaning-17 ?set-17 ?context-38)))

(?form-199 form ((string jabberwock-2 "Jabberwock")))
(?word-jabberwock-8 . jabberwock-2)
(?top-unit-276 . top))

added in
first merge jabberwock-2

added in
second
merge

jabberwock-2

cxn supplier :simple-queue

remaining
cxns

(determiner-nominal-phrase-cxn adverb-adverbial-cxn
adjective-adjectival-cxn noun-nominal-cxn determiner-cxn
very-cxn big-cxn green-cxn mouse-cxn much-cxn the-cxn)

goal tests: no-form-in-top-unit, no-applicable-cxns

form in top
unit

((meets adjective-phrase-4 jabberwock-2)
(meets the-2 adjective-phrase-4))

jabberwock-cxn (lex)

adjective-
phrase-4

very-2

green-
2

the-2

sem syn

the-2

adjective-
phrase-4

green-
2

very-2

tag ?meaning-177

footprints

?top-unit-276

(meaning
(==
(?unknown-meaning-17
?set-17
?context-38)))

(==0 jabberwock-cxn)

footprints

tag ?form-199

?
top-
unit-
276

jabberwock-cxn (lex)

?top-unit-276

(==0 jabberwock-cxn)

(form
(==
(string
?word-jabberwock-8
"Jabberwock")))

?
top-
unit-
276

sem syn

args

sem-cat

footprints

?word-jabberwock-8

 ?meaning-177

(?set-17
?context-38)

?sem-cat-13

(==1
jabberwock-cxn)

footprints

syn-cat

?word-jabberwock-8

 ?form-199

(==1
jabberwock-cxn)

?syn-cat-13

jabberwock-2

the-2

adjective-
phrase-4

green-
2

very-2

sem syn

jabberwock-2

the-2

adjective-
phrase-4

green-
2

very-2

adjectival-
nominal-cxn
(marked-phrasal)

determiner-
nominal-phrase-
cxn
(marked-phrasal)

Figure 5. After the meta-layer has introduced a new lexical construction in the
construction-set, processing continues from where the routine layer failed. The
application of the new construction subsequently triggers the application of other
constructions.

22 L. Steels, R. van Trijp

through syntactic bootstrapping. The idea behind syntactic bootstrapping is that “if
the syntactic structures [of a language] are truly correlated with the meanings, the
range of structures will be informative for deducing which words goes with which
concept” (Gleitman, 1990, p. 30). Indeed, more information about Jabberwock can
be inferred by looking at the final transient structure and retrieve all feature-value
pairs that were added to the Jabberwock-unit by other constructions. In the current
example, the following sem- and syn-cat feature values can be retrieved for the
word Jabberwock and stored in the newly created jabberwock-cxn:

• (sem-cat ((is-countable +)

(sem-function identifier)))

• (syn-cat ((number ?number)

(syn-function nominal)))

The same approach can also be used for achieving semantic bootstrapping, i.e.
predicting a word’s syntactic categorization and actualization based on its meaning
(Grimshaw, 1981). If a diagnostic reports an unexpressed meaning during rou-
tine processing, a repair strategy may create a new lexical construction using the
generic lexical construction, but already filling in the meaning that needs to be ex-
pressed. Just like in the above example, processing continues from there and other
constructions provide additional grammatical information of how such a meaning
is typically expressed in the language.

4.2. Coercion

A lot of language creativity does not involve any new words or constructions,
but rather the coercion of existing linguistic items in novel usage patterns. This
section illustrates how FCG handles coercion through the sentence Adele sneezed
the napkin off the table. The problem of this utterance is well-known: sneeze is the
canonical example of an intransitive verb, but here it is realized as a caused-motion
event, meaning ‘Adele CAUSED the napkin to MOVE off the table by sneezing’
(Goldberg, 1995). Goldberg (2006, p. 22) suggests that processes of accommoda-
tion or coercion allow constructions to “be construed as not being in conflict” so
they can be combined with each other. In other words, coercion can be considered
as a solution to a mismatch between the semantic and/or syntactic information of
the constructions that need to interact with each other.

As it turns out, FCG’s standard techniques for applying constructions (see Bleys
et al., 2011) provide the technical requirements for operationalizing coercion. A

How to Make Construction Grammars Fluid and Robust 23

mismatch occurs when the matching phase fails during the application of a con-
struction. If necessary, FCG can then skip the matching phase and immediately
turn to its more flexible merging operation, which always succeeds as long as there
are no conflicts. However, doing so is a costly operation and easily leads to a com-
binatorial explosion in search (e.g. allowing utterances such as she sneezed her
boyfriend), so it is better to use a meta-layer than blindly allowing constructions to
perform coercion. A second reason for using a meta-layer is that utterances that re-
quire coercion provide good learning opportunities for acquiring emergent patterns
in a language. So the key to achieving coercion is to decide when a construction is
allowed to skip its matching phase.

The example in this section illustrates these issues in more detail. It requires the
reader to be familiar with the approach to argument structure as discussed by van
Trijp (2011). The goal of this example is not to provide the best linguistic descrip-
tion of coercion, but rather to demonstrate how FCG can achieve coercion. It there-
fore scaffolds some of the complexity involved, for example by treating phrases
such as off the table as single lexical constructions and by ignoring issues concern-
ing Tense, Aspect and so on.

4.2.1. Defining a Small Grammar
The example uses four lexical constructions: Adele, sneezed, the napkin and off

the table. Each of these constructions introduces its semantic and syntactic com-
binatorial potential that allow it to interact with other constructions, which need to
select an actual value from this potential during processing (van Trijp, 2011). In
the case of verbal constructions, this involves a potential semantic valence and a
potential syntactic valence. The following definition of sneezed allows the verb to
occur in intransitive patterns:

24 L. Steels, R. van Trijp

(def-lex-cxn sneezed-cxn

(def-lex-skeleton sneezed-cxn

:meaning (== (sneeze ?ev)

(sneezer ?ev ?sneezer))

:args (?ev)

:string "sneezed")

(def-lex-cat sneezed-cxn

:sem-cat (==1 (sem-function predicating))

:syn-cat (==1 (syn-function verbal)))

(def-valence sneezed-cxn

:sem-roles ((agent sneezer))

:syn-roles (subject)))

Meanings in this example are represented using first-order logic. The meaning
of sneezed includes a predicate for the event itself and one for the ‘sneezer’, which
is here assumed to be the only participant role involved in a sneeze-event. Besides
sneezed-cxn, there are three nominal constructions, which have underspecified
sem-role and syn-role features, which captures the fact that nominal units can
play any semantic and syntactic role in a sentence. The only exception in the exam-
ple is off the table, whose syn-role is oblique as its preposition excludes it from
being the subject or object of an utterance:

How to Make Construction Grammars Fluid and Robust 25

(def-lex-cxn Adele-cxn

(def-lex-skeleton Adele-cxn

:meaning (== (adele ?x))

:args (?x)

:string "Adele")

(def-lex-cat Adele-cxn

:sem-cat (==1 (sem-role ?sem-role)

(sem-function referring))

:syn-cat (==1 (function nominal)

(syn-role ?syn-role))))

(def-lex-cxn napkin-cxn

(def-lex-skeleton napkin-cxn

:meaning (== (napkin ?x))

:args (?x)

:string "the napkin")

(def-lex-cat napkin-cxn

:sem-cat (==1 (sem-role ?sem-role)

(sem-function referring))

:syn-cat (==1 (function nominal)

(syn-role ?syn-role))))

(def-lex-cxn table-cxn

(def-lex-skeleton table-cxn

:meaning (== (table ?x))

:args (?x)

:string "off the table")

(def-lex-cat table-cxn

:sem-cat (==1 (sem-role ?sem-role)

(sem-function referring))

:syn-cat (==1 (function nominal)

(syn-role oblique))))

Besides ‘lexical’ constructions, the example also involves some basic argument
structure constructions, of which the intransitive and caused-motion constructions
are the most relevant ones. Here is the intransitive construction:

26 L. Steels, R. van Trijp

(def-arg-cxn intransitive-cxn

(def-arg-skeleton intransitive-cxn

((?event-unit

:sem-cat (==1 (sem-function predicating))

:syn-cat (==1 (syn-function verbal)))

(?agent-unit

:sem-cat (==1 (sem-function referring))

:syn-cat (==1 (syn-function nominal)))))

(def-arg-require intransitive-cxn

((?event-unit

:cxn-form (== (meets ?agent-unit ?event-unit)))))

(def-arg-mapping intransitive-cxn

:event

(?event-unit

:args (?ev)

:sem-valence (==1 (agent ?ev ?agent))

:syn-valence (==1 (subject ?agent-unit)))

:participants

((?agent-unit

:sem-role agent

:syn-role subject

:args (?agent))))))

The above templates first set up a skeletal construction that contains an event-
unit and an agent-unit. The def-arg-require template defines an SV word or-
der (the agent-unit comes before the event-unit), and finally the def-arg-mapping
template states that the semantic role Agent maps onto the syntactic role subject.
The templates do not define a constructional meaning for the intransitive construc-
tion, as the construction is too abstract to be associated with a coherent meaning.
Next, the caused-motion construction is defined using the same templates:

How to Make Construction Grammars Fluid and Robust 27

(def-arg-cxn caused-motion-cxn

(def-arg-skeleton caused-motion-cxn

((?event-unit

:sem-cat (==1 (sem-function predicating))

:syn-cat (==1 (syn-function verbal)))

(?agent-unit

:sem-cat (==1 (sem-function referring))

:syn-cat (==1 (syn-function nominal)))

(?patient-unit

:sem-cat (==1 (sem-function referring))

:syn-cat (==1 (syn-function nominal)))

(?locative-unit

:sem-cat (==1 (sem-function referring))

:syn-cat (==1 (syn-function nominal)))))

(def-arg-require caused-motion-cxn

((?event-unit

:cxn-meaning (== (cause-move ?ev)

(causer ?ev ?causer)

(moved ?ev ?moved)

(source ?ev ?source))

:cxn-form (== (meets ?agent-unit ?event-unit)

(meets ?event-unit ?patient-unit)

(meets ?patient-unit ?locative-unit)))))

28 L. Steels, R. van Trijp

(def-arg-mapping caused-motion-cxn

:event

(?event-unit

:args (?ev)

:sem-valence (==1 (agent ?ev ?agent)

(patient ?ev ?patient)

(locative ?ev ?locative))

:syn-valence (==1 (subject ?agent-unit)

(object ?patient-unit)

(oblique ?locative-unit))

:fusion ((?agent ?causer)

(?patient ?moved)

(?locative ?source)))

:participants

((?agent-unit

:sem-role agent

:syn-role subject

:args (?agent))

(?patient-unit

:sem-role patient

:syn-role object

:args (?patient))

(?locative-unit

:sem-role locative

:syn-role oblique

:args (?locative))))))

As can be seen, the caused-motion construction as defined in this example shows
some degree of overlap with the intransitive construction: both require an event and
an agent. On top of that, the caused-motion construction requires a patient-unit
and a locative unit. It also carries its own constructional meaning (‘x causes y to
move from location z’), in which the locative participant is restricted to the source
location of the motion-event for convenience’s sake.

4.2.2. Detecting a Problem in Routine Processing
Suppose that the hearer observes the utterance Adele sneezed the napkin off

the table and starts a parsing task. First, the four lexical constructions apply and
add meaning, semantic and syntactic categories to the transient structure. Next,

How to Make Construction Grammars Fluid and Robust 29

top

Parsing "Adele sneezed the napkin off the table"

Applying construction set (6) in direction

No solution found

initial
structure top

application
process

Meaning:
nil

reset

sem syn

initial

sneezed-
cxn (lex)

table-
cxn
(lex)

*
napkin-
cxn
(lex),
adele-
cxn
(lex)

top

top

cxn-applied

application result

status cxn-applied

source
structure

top

applied
construction

resulting
structure

top

resulting
bindings

((?sem-role-248 . agent) (?sneezer-71 . ?x-175) (?ev-121 . ?ev-120)
(?agent-271 . ?sneezer-71) (?subject-298 . adele-15)
(?syn-role-201 . subject)
(?form-1113 form ((meets adele-15 sneezed-14)))
(?agent-unit-68 . adele-15) (?event-unit-68 . sneezed-14)
(?top-unit-1746 . top))

added in
first merge sneezed-14

top

added in
second
merge

top

cxn supplier :simple-queue

remaining cxns nil

goal tests: participant-structure-indicated, no-applicable-cxns

participant structure
indicated

((napkin ?x-177) (table ?x-179) (adele ?x-175) (sneeze ?ev-120)
(sneezer ?ev-120 ?x-175))

intransitive-cxn (arg)

adele-15

off-the-table-10

sneezed-14

the-napkin-10

sem syn

adele-15

the-napkin-10

off-the-table-10

sneezed-14

?top-unit-1746

?top-unit-1746

intransitive-cxn (arg)

?top-unit-1746

?top-unit-1746

?event-unit-68

?agent-unit-68

?event-unit-68

sem syn ?agent-unit-68

?event-unit-68

the-napkin-10

off-the-table-10

adele-15

sneezed-14

sem syn

adele-15

the-napkin-10

off-the-table-10

sneezed-14

+
+
+

+
+
+

Figure 6. Given the right diagnostics, the FCG-system can detect that the grammar
did not handle the argument structure of a sentence adequately.

30 L. Steels, R. van Trijp

the collection of argument structure constructions is considered. First, the caused-
motion construction fails to apply even though it finds all of the units that it requires
(three nominal and one verbal units). The failure is due to a mismatch between
the construction’s required syntactic valence (a subject, object and oblique) and the
potential syntactic valence provided by the verb (which only contains a subject).
The construction is therefore put aside for the time being.

The intransitive construction, on the other hand, can successfully match and
apply. It finds all the units that it requires (one nominal and one verbal unit), its
word order constraints are satisfied, and its required syntactic valence matches with
the potential syntactic valence provided by sneezed. The intransitive construction is
in fact the only argument structure construction that can be applied during routine
processing, and it is also the last one. At this moment in processing, parsing yields
the following meanings:

((sneeze ?ev) (sneezer ?ev ?sneezer) (adele ?sneezer)
(napkin ?obj-x) (table ?obj-y))

In the parsed meaning, the predicates sneezer and adele are connected to each
other through the shared variable ?sneezer. The predicates napkin and table,
however, are unconnected from the rest of the meaning, which may cause problems
for interpretation. Clearly, this parsed meaning does not indicate the proper par-
ticipant structure of the sentence, nor does it convey the caused-motion meaning
that the speaker implied. It is therefore necessary to implement a diagnostic that
autonomously detects whether the grammar has dealt with the argument structure
of the sentence adequately.

In the case of English speakers, it is plausible to assume that they have devel-
oped the necessary meta-knowledge about their language. Part of that knowledge is
that on a clausal level, events and their participants are typically connected to each
other. A diagnostic for English argument structure can thus simply test whether the
meanings of every unit within a clause are linked to the meanings of other units
through variable equalities. Figure 6 shows the current example of routine process-
ing. The final node in the search tree is expanded and shows the application of
the intransitive construction. The goal-test participant-structure-indicated
implements the diagnostic just described and returns a failure. The diagnostic then
reports a problem and FCG’s meta-layer is activated to try and repair the problem.

4.2.3. Repair through Coercion
As said before, a possible repair is coercion: instead of first having a matching

phase, FCG tests whether a construction can impose its feature structure through

How to Make Construction Grammars Fluid and Robust 31

the merge operation. As the above diagnostic is specific to argument structure con-
structions, the repair also only considers those kinds of constructions for merging.

If coercion is allowed, not only the intransitive construction can apply, but the
caused-motion construction as well. The resulting transient structure of applying
the caused-motion construction is shown in Figure 7. Since only the caused-motion
construction satisfies the goal-test of indicating the complete participant structure,
it is chosen as the best branch in the search process. In the case of multiple con-
structions satisfying the goal-test, the hearer must use other contextual knowledge
and cognitive processes to figure out which is the most plausible one. Coercing
the caused-motion construction leads to the following parsed meaning, in which all
coreferential variables are made equal and to which the caused-motion construction
has added a caused-motion sense:

((Adele ?x) (napkin ?y) (table ?z)
(sneeze ?ev) (sneezer ?ev ?x)
(cause-move ?ev) (causer ?ev ?x)
(moved-object ?ev ?y) (source ?ev ?z))

4.2.4. Consolidating: Learning from Coercion
If coercion has helped the hearer in achieving a successful communicative in-

teraction, s/he can try to learn from coercion in order to be able to use sneeze as a
caused-motion verb in future utterances (as in She sneezed the tissue off the table or
she sneezed the foam off the cappuccino). In other words, the language user will try
to consolidate this particular usage experience. This is possible by performing the
following steps:

1. Check which feature-value pairs are added by the coerced construction;

2. Check which units these pairs belong to and retrieve the constructions that
were responsible for creating the units by checking their footprints feature
or by inspecting the search history.

3. Update the constructions and, if necessary, create additional links between
constructions in the linguistic inventory.

FCG provides all the necessary information for the first step, so we can easily
find that the construction has added the following syntactic roles to the verbal unit
on the syntactic pole:

32 L. Steels, R. van Trijp

top

top

footprints

sem-subunits

top

(caused-motion-cxn
arg-cxn)

(the-napkin-23
adele-33
off-the-table-23
sneezed-32)

footprints

syn-subunits

form

bindings
after
matching

((t . t))

structure
after first
merge

bindings
after first
merge

((?syn-role-351 . object) (?syn-role-350 . subject) (?subject-408 . adele-33)
(?patient-unit-85 . the-napkin-23) (?locative-unit-85 . off-the-table-23)
(?agent-unit-200 . adele-33) (?event-unit-200 . sneezed-32)
(?form-1642 form ((meets adele-33 sneezed-32))) (?top-unit-2275 . top))

structure
after
second
merge

resulting
structure

top

(caused-motion-cxn
arg-cxn)

(the-napkin-23
adele-33
off-the-table-23
sneezed-32)

((meets sneezed-32
the-napkin-23)

(meets
the-napkin-23
off-the-table-23))

?top-unit-2275

?top-unit-2275

?event-unit-200

?top-unit-2275

?top-unit-2275

?event-unit-200

?patient-unit-85

?agent-unit-200

?event-unit-200

sem syn ?patient-unit-85

?agent-unit-200

?event-unit-200

the-napkin-23

adele-33

off-the-table-23

sneezed-32

the-napkin-23

adele-33

off-the-table-23

sneezed-32

footprints

meaning

sem-cat

args

the-napkin-23

(napkin-cxn)

((napkin
?x-447))

((sem-role
patient)

(sem-function
referring))

(?x-447)

footprints

meaning

sem-cat

args

adele-33

(adele-cxn)

((adele
?x-445))

((sem-role
agent)

(sem-function
referring))

(?x-445)

footprints

meaning

sem-cat

args

off-the-table-23

(table-cxn)

((table
?x-449))

((sem-role
locative)

(sem-function
referring))

(?x-449)

meaning

footprints

sem-cat

sneezed-32

((sneezer
?ev-329
?x-445)

(sneeze
?ev-329)

(moved ?ev-329
?x-447)

(causer
?ev-329
?x-445)

(source
?ev-329
?x-449)

(cause-move
?ev-329))

(sneezed-cxn)

((sem-valence
((patient

?ev-329
?x-447)

(locative
?ev-329
?x-449)

(agent
?ev-329
?x-445)))

(sem-function
predicating))

sem syn

footprints

form

syn-cat

the-napkin-23

(napkin-cxn)

((string
the-napkin-23
"the napkin"))

((syn-role object)
(syn-function
nominal))

footprints

form

syn-cat

adele-33

(adele-cxn)

((string adele-33
"Adele"))

((syn-role subject)
(syn-function
nominal))

footprints

form

syn-cat

off-the-table-23

(table-cxn)

((string
off-the-table-23
"off the table"))

((syn-role oblique)
(syn-function
nominal))

form

footprints

syn-cat

sneezed-32

((string sneezed-32
"sneezed")

(meets adele-33
sneezed-32))

(sneezed-cxn)

((syn-valence
((object

the-napkin-23)
(oblique
off-the-table-23)

(subject
adele-33)))

(syn-function
verbal))

Figure 7. Resulting transient structure after coercing the caused-motion construction.

How to Make Construction Grammars Fluid and Robust 33

((object ?napkin) (oblique ?table))

And the following semantic roles on the semantic pole:

((patient ?ev ?y) (location ?ev ?z))

Next, the footprints feature tells us that the verbal unit was created by the
sneezed-lex construction, whose categories sem-valence and syn-valence can
now be updated using the same def-valence template as before. Finally, the lan-
guage user creates a link between the verb sneeze and the caused-motion construc-
tion. As there is only one usage experience so far, this link will have a low confi-
dence score because the language user doesn’t know yet whether a caused-motion
usage of sneeze is a valid convention of his/her language. The degree of entrench-
ment of this distribution may increase if the language user observes or performs
more successful instances, or the link may be forgotten if there is no reinforcement
in later interactions.

5. Conclusions

There is a long tradition in linguistics that sees a grammar as prescribing how
a language should be spoken, and consequently parsing is seen as the process of
deciding whether a sentence is grammatical. Parsers therefore block as soon as
situations are encountered that are not covered by the grammar. However, gram-
maticality is not what is most significant to human listeners. They need to under-
stand what the speaker is saying and do not pay attention to whether the utterances
they hear adhere strictly to the well established syntactic conventions of their lan-
guage. Indeed, listeners may not even notice that there are ungrammaticalities (just
as readers may not notice spelling mistakes).

Similarly, speakers really only worry about strict grammaticality when they are
writing texts, since it is only then that they have adequate time to systematically
revise their sentences in order to satisfy the conventions that the authors believe
to be the standard. In normal discourse, utterances have to be produced so fast that
speakers cannot spend enough time to ensure grammaticality, which typically means
that sentence fragments are produced as fast as they are ready and subsequently may
not fit within the larger plan of a sentence.

Fluid Construction Grammar drops the linguistic obsession with grammatical-
ity judgements and suggests that grammar and grammatical processing must be de-
signed to be flexible, so that incomplete fragments, unconventional expressions and

34 L. Steels, R. van Trijp

errors do not entirely block language processing. Parsing and production should be
able to proceed as far as possible, including up to the point of interpreting available
fragments or articulating partial phrases, so that feedback can be obtained and the
dialog can be repaired.

Acknowledgements

This research was carried out at the AI Lab of the University of Brussels (VUB)
and the Sony Computer Science Laboratory in Paris, with partial funding from the
EU FP7 project ALEAR. The authors thank the anonymous reviewers for their in-
sightful comments and constructive feedback. All remaining errors are of course
their own.

References

Bleys, Joris, Kevin Stadler, Joachim De Beule (2011). Search in linguistic pro-
cessing. In Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar.
Amsterdam: John Benjamins.

Brown, Colin M., Peter Hagoort (Eds.) (1991). The Neurocognition of Language.
Oxford: Oxford University Press.

De Vylder, Bart, Karl Tuyls (2006). How to reach linguistic consensus: A proof
of convergence for the naming game. Journal of Theoretical Biology, 242(4),
818–831.

Fernández-Ordóñez, Ines (1999). Leı́smo, laı́smo, loı́smo: Estado de la cuestión.
In I. Bosque, V. Demonte (Eds.), Gramática Descriptiva de la Lengua Española,
vol. I, 1319–1390. Madrid: RAE – Espasa Calpe.

Fouvry, Frederik (2003). Robust Processing for Constraint-Based Grammar For-
malisms. Ph.D. thesis, University of Essex, Colchester.

Garrod, Simon, Anne Anderson (1987). Saying what you mean in dialogue: A
study in conceptual and semantic coordination. Cognition, 27, 181–218.

Gleitman, Lila (1990). The structural sources of verb meanings. Language Acqui-
sition, 1(1), 3–55.

Goldberg, Adele E. (1995). A Construction Grammar Approach to Argument Struc-
ture. Chicago: Chicago UP.

How to Make Construction Grammars Fluid and Robust 35

Goldberg, Adele E. (2006). Constructions At Work: The Nature of Generalization
in Language. Oxford: Oxford University Press.

Grimshaw, Jane (1981). Form, function, and the language acquisition device. In
C.L. Baker, J.J. McCarthy (Eds.), The Logical Problem of Language Acquisition,
183–210. Cambridge MA: MIT Press.

Heine, Bernd (1997). The Cognitive Foundations of Grammar. Oxford: Oxford
University Press.

Hopper, Paul (1991). Emergent grammar. In E. Traugott, B. Heine (Eds.), Ap-
proaches to Grammaticalization. Amsterdam: John Benjamins.

Labov, William (1994). Principles of Linguistic Change. Volume 1: Internal Fac-
tors. Oxford: Basil Blackwell.

Levelt, Willem J.M. (1989). Speaking. Cambridge MA: MIT Press.

Liberman, Alvin M., Ignatius G. Mattingly (1985). The motor theory of speech
perception revised. Cognition, 21, 1–36.

Sperber, Dan, Deirdre Wilson (1986). Relevance: Communication and Cognition.
Cambridge, MA: Harvard University Press.

Steels, Luc (1996). A self-organizing spatial vocabulary. Artificial Life, 2(3), 319–
332.

Steels, Luc (2003a). Evolving grounded communication for robots. Trends in Cog-
nitive Sciences, 7(7), 308–312.

Steels, Luc (2003b). Language re-entrance and the ‘inner voice’. Journal of Con-
sciousness Studies, 10(4-5), 173–185.

Steels, Luc (2011). A design pattern for phrasal constructions. In Luc Steels (Ed.),
Design Patterns in Fluid Construction Grammar. Amsterdam: John Benjamins.

Steels, Luc, Frédéric Kaplan (2002). Bootstrapping grounded word semantics. In
T. Briscoe (Ed.), Linguistic Evolution through Language Acquisition: Formal
and Computational Models, 53–73. Cambridge: Cambridge University Press.

36 L. Steels, R. van Trijp

Steels, Luc, Martin Loetzsch (2010). Babel: A tool for running experiments on the
evolution of language. In S. Nolfi, M. Mirolli (Eds.), Evolution of Communica-
tion and Language in Embodied Agents, 307–313. Berlin: Springer.

Talmy, Leonard (2000). Toward a Cognitive Semantics, Concept Structuring Sys-
tems, vol. 1. Cambridge, Mass: MIT Press.

van Trijp, Remi (2011). A design pattern for argument structure constructions. In
Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar. Amsterdam:
John Benjamins.

Wahlster, Wolfgang (Ed.) (2000). Verbmobil: Foundations of Speech-to-Speech
Translation. Artificial Intelligence. Berlin: Springer.

