
Notice

This paper is the author’s draft and has now been published officially as:

Steels, Luc (2012). Design Methods for Fluid Construction Grammar. In Luc
Steels (Ed.), Computational Issues in Fluid Construction Grammar, 3–36. Berlin:
Springer.

BibTeX:

@incollection{steels2012designmethods,
Author = {Steels, Luc},
Title = {Design Methods for Fluid Construction Grammar},
Pages = {3--36},
Editor = {Steels, Luc},
Booktitle = {Computational Issues in {Fluid Construction Grammar}},
Publisher = {Springer},
Series = {Lecture Notes in Computer Science},
Volume = {7249},
Address = {Berlin},
Year = {2012}}

Design Methods for
Fluid Construction Grammar

Luc Steels1,2

1 ICREA-Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
2 Sony Computer Science Laboratory Paris, France

Abstract. The paper sketches a methodology for designing and im-
plementing complex lexicons and grammars using Fluid Construction
Grammar (FCG). FCG emphasizes a functional viewpoint of language
and decomposes grammatical systems based on their semantic domains
and communicative functions. Rather than directly specifying all the
components of a construction explicitly, which would lead to highly com-
plex definitions, FCG uses abstractions in the form of templates that
implement design patterns common across human languages.

1 Introduction

Fluid Construction Grammar (FCG) is a new formalization of many ideas that
have been proposed in the recent literature on cognitive linguistics ([20, 21, 46])
and construction grammar ([8, 14, 15, 18, 26]). A construction is a regular pattern
of usage in a language - such as a word, a combination of words, an idiom,
or a syntactic pattern - which has a conventionalized meaning and function.
For example, a resultative construction implies a particular syntactic pattern of
the form: Subject Verb Direct-Object Predicate, as in "Mary licked her plate
clean". It expresses that the referent of the Direct-Object ("her plate") gets
into a particular state ("clean") based on the action described in the main verb
("licked") and carried out by the subject ("Mary").

A construction grammar catalogs the different constructions in a language,
both their semantic (including pragmatic) aspects and their syntactic (including
morphological and phonetic) aspects. Although construction grammars are usu-
ally described only in verbal terms, particularly when the grammar is intended
for second language learning or teaching, it is entirely possible to formalize and
operationalize construction grammar in order to model human natural language
processing. Such an implementation has the advantage of making it clear what
a construction entails, and it makes the use of construction grammars in com-
putational applications possible.

Formalizations of construction grammar differ from generative rewrite gram-
mars in two ways:

1. The definition of constructions takes the form of bi-directional associations
relating aspects of meaning to aspects of form, so that the same construction

Design Methods for Fluid Construction Grammar 3

can be used unchanged in parsing as well as production without compro-
mising efficiency. Production here entails more than randomly generating a
possible sentence. It is the process whereby the meaning resulting from con-
ceptualization is turned into the best possible sentence respecting as much
as possible known conventions of the language.

2. The bi-directional associations potentially have to take into consideration as-
pects from all levels of language (pragmatics, semantics, syntax, morphology
and phonetics), simply because human language is not modularly organized.
For example, Hungarian (poly-personal) verbal agreement is based on se-
mantic considerations, because the position of the subject with respect to
the deictic center is taken into account, syntactic considerations, because it
happens only when a certain case structure is present, morphological con-
siderations, because the form of the verb determines which suffix is used,
and phonetic considerations because there has to be vowel harmony between
the main vowel in the verb stem and the suffix [3]. Lexicon and grammar
can therefore be best organized vertically based on data structures that
cut across different levels rather than horizontally in terms of modular au-
tonomous layers where syntax is treated independently from semantics or
phonetics.

A construction in formal construction grammar therefore defines not only a par-
ticular syntactic pattern but also the semantic structure implied by the pattern,
and it may include additional pragmatic, morphological and phonetic aspects,
as well as the extra meaning that the construction contributes to the meanings
contributed by its constituents.

FCG is one of a growing number of computational construction grammars,
which also includes Embodied Construction Grammar [2] and Sign-based Con-
struction Grammar [25]. It has been developed specifically for building deep
production and comprehension systems that can act as the core of grounded
human-robot or robot-robot interactions, utilizing world models derived from
perception and motor activity (see Figure 1) [35]. Deep language processing re-
quires handling rich representations of grammatical structure and an integration
of semantics right into the grammar (as opposed to delegating the problem of
semantics to another component).

FCG is based on techniques widely used in current computational linguistics,
in particular the representation of linguistic structures with feature structures
[4, 7], and the use of unification for applying constructions to expand linguistic
structures in language parsing and production, as pioneered in Functional Uni-
fication Grammar [17], and also used in Lexical Functional Grammar [9], and
Head-driven Phrase structure Grammar ([28, 29]). At the same time, FCG intro-
duces a number of innovations, such as a powerful structure-building operator
called the J-operator. FCG is implemented on top of a Common LISP environ-
ment as most other computational grammars. It is fully operational and made
available for free to the research community (http://www.fcg-net.org/). It has
already been used in a variety of experiments in (artificial) language evolution
and human-robot interaction [38, 39, 43].

4 L. Steels

Fig. 1. FCG has been developed for experiments in human-robot and robot-robot
interaction, which requires that not only lexical and syntactic issues be handled but
also semantics and grounded meaning.

There are now various introductory texts and papers reporting worked out
examples in FCG (see in particular [41] and [43]). The present paper focuses
on the design methods that have emerged for coping with the complexity of
real world grammars. Complexity is not meant here with respect to the size
of the inventory of constructions (although that is also a critical point) but
rather with respect to the depth with which the relevant linguistic phenomena
are handled. Computer science has a lot of experience in building very complex
systems and has proposed various design concepts such as the use of design
patterns, computational abstractions, compilation from high level specifications,
etc. These same concepts are potentially of great value in grammar design as
well.

Typically, constructions in FCG are defined in terms of a layer of abstractions
based on templates. Templates capture common design patterns relevant for hu-
man languages, such as functional structure, agreement, field topology, valence,
linking, etc. [41] Different templates together build an operational construction
so that a modular design remains possible, even though at the operational level
this modularity is no longer explicitly present. Efficiency considerations are sep-
arated as much as possible from design considerations. Efficiency is gained by
compiling templates, by maintaining dependencies between constructions that
can be used for priming [49] and by chunking combinations of constructions
[32]. The use of templates also plays an important role in modeling language
learning, because they can act as primitive operators for expanding or changing
constructions.

Design Methods for Fluid Construction Grammar 5

The remainder of this paper is structured along the three proposed levels of
grammar design and implementation. The first section addresses the linguistic
level. It introduces the main linguistic principles of construction grammar in
general and the specific linguistic approach that is used in Fluid Construction
Grammar in particular. These principles are familiar to linguists but are included
to help computer scientists grasp the fundamentals of construction grammar.
The next section turns to the design level, explicating the notion of a design
pattern and the templates used to implement them. The third section turns to
the operational level, introducing some of the main representational mechanisms
and processing steps available in FCG. The operational level is defined here only
very briefly. It is discussed more formally in a later chapter of this book [10] and
the reader is referred to the introductory papers in [41] and the manual and other
on-line resources on the FCG distribution website: http://www.fcg-net.org/.

2 Linguistic Level

This section briefly introduces the general approach to language that is advo-
cated in construction grammars, and some of the more specific choices that
have been adopted for Fluid Construction Grammar. One of the most principled
points is that Fluid Construction Grammar advocates a functionalist rather than
formalist perspective on language.

2.1 The Functionalist versus Formalist Perspective on Language

The debate between functionalists and formalists has been raging in linguistics
for a long time, although the debate is often more rhetorical than real [27].
Nevertheless, there is a profound difference in point of view, with significant
consequences on how one approaches language processing and language learning.
From a functionalist point of view, language is primarily seen as a tool for
communication. The speaker is influencing the cognitive activities that go on in
the mind of the hearer, so that the hearer will pay attention to certain aspects of
the world, perform certain actions, store information, start a thinking process,
etc. A specific sentence is a way to evoke some of the tools provided by the
language and provide specific settings for their usage.

From a formalist perspective, language is not primarily studied as a commu-
nicative tool. The focus of analysis is on the perceivable properties of sentences
and their structure. It would be like describing a hammer as consisting of a
cylinder and a block, attached in a particular way to each other, whereas a func-
tionalist perspective would describe a hammer as consisting of a handle and a
head. The handle is for holding the hammer and the head for hitting the object.
The handle and the head typically take the form of a cylinder and a block, but
the functionalist perspective emphasizes the importance of their function, par-
ticularly because the same function can often be achieved by objects with many
different kinds of shapes. For example, the two cylinders could be of equal size,
the handle could either stick through the head or be attached to it in some other

6 L. Steels

way, the head could take the form of a block instead of a cylinder, etc. More
radically, an entirely different object such as a shoe can become a hammer with
the sole functioning as head.

In linguistics, those adopting a formalist viewpoint emphasize the syntactic
structures of a language, usually by defining a procedure for generating all possi-
ble structures judged to be grammatical in a language, whereas those adopting a
functionalist viewpoint focus on identifying how forms achieve syntactic and se-
mantic functions. Thus, the distinction between nouns and verbs is not viewed as
purely structural, i.e. in terms of which syntactic structures they can be part of,
but in terms of possible functions that nouns and verbs can have in communica-
tive activities: Nouns can be used as nominals to introduce classes of objects for
forming referring expressions whereas verbs typically introduce classes of events
to describe a state of affairs.

Generally speaking, taking a functional stance for dealing with tools has a
number of clear advantages. The better you understand the function of each
component of a tool the more you can use it properly. A functional perspec-
tive also helps to select the right variant of a tool for a particular context, for
recognizing a tool even if it does not have a classical shape, and for improving
it. Of course, often people use tools without understanding them fully and just
imitate how they have seen others using the tool. This stage is often the first
step towards acquiring full mastery which unavoidably requires a functionalist
perspective.

The same advantages can be seen when language is treated as a tool. A func-
tional analysis leads to a better understanding of why language is the way it is
and to parsing and production systems that are more flexible and robust [44].
It suggests also an alternative to purely statistical language learning techniques,
one which uses functional inference instead of inductive inference. Concretely,
the learner figures out the meaning and the function of unknown words or con-
structions by reconstructing which unknown forms were introduced to achieve
them [34].

2.2 Semantic Functions and Cognitive Operations

Once we adopt a functionalist view on language, it becomes clear quite quickly
that every element in a sentence has both a meaning and a semantic function.
The meaning or semantic content of a word is the concept it introduces, and the
semantic function is what is to be done with this building block during inter-
pretation. For example, the word “slow" in “the slow train" evokes the concept
‘slow’, which concerns the relative speed of moving objects. Its semantic func-
tion, at least in this phrase, is to restrict the set of possible referents of the noun,
specifically to restrict the set of trains in the context to those that have a slow
speed.

The same meaning can have a variety of semantic functions, as illustrated in
the following sentences:

1. The slow train.

Design Methods for Fluid Construction Grammar 7

2. They slow down.
3. The slow go first.
4. The train was slow.
5. They ran slowly.

All these sentences make use of the concept of ‘slow’, but they differ in what they
require the hearer to do with this concept: (in 1.) to use it to further restrict the
class of possible referents, (in 2.) to circumscribe the movement of the subject of
the sentence, (in 3.) to identify a class of objects based on their speed, (in 4.) to
assert a property of the subject, and (in 5.) to provide an additional attribute
of the movement introduced by the verb.

The notion of semantic function is often only vaguely defined. When we
want to formalize and operationalize grammar we need a more precise definition.
FCG assumes the perspective of procedural semantics, which proposes that the
interpretation of a sentence requires executing a set of cognitive operations over a
perceptually grounded world model and discourse model [50, 51]. Each operation
yields a particular result (for example it delineates a set of objects in the context)
which can then again be used by other operations. The operations include set
operations, selection of elements out of sets, filtering operations, the computation
of perceptual features of specific entities, geometric transformations of positions
of objects to achieve perspective reversal, etc.

Here are some concrete examples of cognitive operations:

1. get-context, which gets the objects in the present context and stores them
in a discourse model.

2. filter-set-class, which takes a set of objects in the discourse model and
filters out those which belong to a certain identified class.

3. count-elements-set, which takes a set of objects in the discourse model
and counts how many elements it contains.

4. select-unique-element, which selects the unique element out of a singleton
set.

5. set-union, which forms the union of two sets.
6. describe-event, which asserts that a particular event takes place in the

current context

Our group has developed a meaning representation system called Incremental
Recruitment Language (IRL) that can be used for grounded procedural seman-
tics [33]. Each cognitive operation in IRL takes a number of arguments, one of
which (usually called the target argument) is considered to be the result of the
cognitive operation. Cognitive operations can be combined together in a net-
work with one operation providing or using results produced by another one,
as shown for example in Figure 2 from [31], which represents the procedural se-
mantics of the German phrase “der vordere Block" (the front block). When such
a network is executed, each cognitive operation computes specific values for its
arguments as fitting with the present world model and discourse context. These
values propagate in the network until no more computation can be done. IRL
is not further discussed in the present book because its details are not directly

8 L. Steels

relevant to grammatical processing. See reference [30] for an introduction and
more examples.

(get-context ?src-2)

(apply-class ?src-5 ?src-2 ?class-1)

(apply-selector ?ref-3 ?src-3 ?sel-1)

(bind selector ?sel-1 unique)

(apply-spatial-category ?src-3 ?src-5 ?cat-6)

(bind frontal-category ?cat-6 front)

(bind object-class ?class-1 block)

Fig. 2. Example of a network of cognitive operations as needed for interpreting the
German sentence “der vordere Block" (the front block). Each cognitive operation has
a number of arguments (indicated with a question mark in front of them) which are
to be filled by specific values. The arrows indicate that there are data flow relations
between the different cognitive operations.

We can now be more precise about what a semantic function is. It specifies
the role of a conceptual building block, such as ‘slow’, in a particular cognitive
operation. For example, the semantic function of “slow" in “the slow train" is
called a qualifier because the concept ‘slow’ is used in this case as the qualifier
of a filter-set-qualifier operation. This operation filters a set of objects in
the discourse model with respect to whether they satisfy a given attribute. The
target outcome of this filtering operation is to further restrict a set of possible
referents.

With each semantic function corresponds also a syntactic function which is
associated with a lexical category, also known as a part of speech or a word
class. For example, the semantic function of “slowly" is to modify the movement
concept introduced by the verb “ran". This syntactic function is usually called
adverbial. The adverbial function is signalled by the affix “-ly", which turns
“slow", by default an adjective, into an adverb.

The same lexical category is associated with many potential syntactic func-
tions and the same syntactic function with many potential semantic functions.
For example, an adjective may be used as a qualifier (as in “the slow train") but
also as a predicate (as in “the train is slow"). The same word “light" may be used
in an adjectival function as a qualifier (as in “the light block") or in an adverbial
function as a modifier of another color concept (as in “the light green block").

In parsing, the choice of which syntactic or semantic function is actually the
case is based on the syntactic and semantic context. In production, the choice is
based on what cognitive operations the speaker wants the hearer to perform. For
example, if the speaker wants the hearer to perform a filter-set-qualifier

Design Methods for Fluid Construction Grammar 9

Lexical category
 (e.g. adjective)

Syntactic function
 (e.g. adjectival)

Cognitive operation
 (e.g. filter-set-qualifier)

Semantic function
 (e.g. qualifier)

Fig. 3. From a functional point of view, lexical category are associated with possible
syntactic functions, which are associated with possible semantic functions. A semantic
functions specifies the role of a concept in a cognitive operation.

operation using ‘slow’, this will require a word that can act in an adjectival
function. Many human languages (including English) are quite flexible with re-
spect to which lexical category can satisfy which syntactic function because a
word which by default belongs to one category can often be coerced into another
category, and this coercion can then become conventionally accepted in the lan-
guage. For example, in “The slow go first", the adjective “slow" has been coerced
into a nominal function so that it can be used semantically to identify a class of
objects.

The associations between lexical categories, syntactic functions and semantic
functions are bi-directional (see figure 3). Information about the lexical category
of a word is used during parsing to hypothesize a possible syntactic function,
which is then used to hypothesize a possible semantic function. During produc-
tion, the mappings are used in the reverse order. A particular semantic function
is potentially actualized with a particular syntactic function, which is then ex-
pressed using words with specific lexical categories. The table in Figure 4 con-
tains some more examples of such associations, all involving the word “slow" as
illustrated in the sentences given earlier.

2.3 Phrasal Structures

One of the key characteristics of human languages is their hierarchical or com-
positional nature. A sentence does not only consist of individual words which
each have their own syntactic and semantic functions, but of phrases that group
several words or phrases together so that they can function as units in their own
right. Phrases belong to a particular syntactic type (for example nominal phrase)
and have the potential to take on syntactic or semantic functions within larger
phrases, just like individual words. The meaning of a phrase consists of a network
of cognitive operations whose arguments are interlinked. These operations and

10 L. Steels

lex-cat syntactic fnct semantic fnct cognitive oper
1. adjective adjectival qualifier filter-set-qualifier
2. verb verbal event describe-event
3. noun nominal identifier filter-set-identifier
4. adjective predicate predicate describe-predicate
5. adverb adverbial modifier apply-modifier

Fig. 4. Examples of associations between lexical categories (parts of speech), syntactic
functions, and semantic functions. The relevant cognitive operation is given in the last
column.

some of the bindings for their arguments are provided by the individual words,
but the phrase may add additional cognitive operations and linkings of its own.

From a functionalist perspective, phrases are primarily defined in terms of
the functions of their constituents, just as a hammer is primarily defined from a
functional point of view in terms of the functions of its components. For example,
a nominal phrase like “the train" consists of a determiner and a nominal. The
semantic function of the nominal is to identify a set of objects in the present
context, and the determiner then specifies which element or elements needs to
be selected out of this set.

The constraints that allow a constituent (word or phrase) to play a partic-
ular role within a phrase depend on the language. They typically include the
following:

1. Syntactic Categorizations: Constituents of a phrase typically have to belong
to certain lexical categories (if they are individual words) or phrase types (if
they are phrases themselves), or they need to have at least the potential to
take on certain syntactic functions, possibly after coercion. For example, a
constituent can normally only be the determiner of a nominal phrase if it is
an article or numeral.

2. Semantic Categorizations: The referent of a constituent typically has to be
of a certain semantic type. For example, the meaning of a nominal has to
produce a set, and this set is often restricted based on the kind of nominal
phrase it occurs in. For example, a plural definite article implies that the set
of objects from which the determiner selects one or more elements has to be
a countable set.

3. Ordering: Often the constituents of a phrase are constrained in terms of the
order in which they appear inside the phrase. For example, a compositional
color description such as "light blue" requires that the constituent introduc-
ing the non-hue category acting as modifier appears before the hue category
acting as the qualifier.

4. Agreement: Often there are syntactic and semantic agreement relations be-
tween the constituents of a phrase. For example, the constituents functioning

Design Methods for Fluid Construction Grammar 11

as the determiner, adjectival, and nominal of the same nominal phrase have
to agree with respect to number and gender in French.

The primary function of a phrasal construction is to define all these charac-
teristics and to specify also properties of the phrase as a whole, such as which
features percolate up from constituents to the phrase (for example, if the noun
in a nominal phrase is feminine then the phrase as a whole will be feminine in
French), what additional syntactic and semantic properties hold for the phrase,
and how the meaning of the phrase is composed by combining the meanings of
the parts [40].

2.4 The Grammar Square

Lexical items and phrase structure form the backbone of a sentence because they
signal the main conceptual building blocks that the speaker wants to convey
and how these building blocks are to be used when interpreting a sentence.
It turns out that human languages often convey various additional meanings
(usually called grammatical meanings) by modulating and extending the basic
skeletal structure or by adding morphological or phonetic variations on the words
already used. This is similar to the way in which a (classical) figurative painting
introduces a basic structure for the scene, such as the different figures against the
background, and then superimposes additional aspects. For example, the painter
may use a particular color palette to give the scene an emotional quality, or add
contrast in terms of lighter and shaded areas to highlight some of the elements
in the scene, or depict strong facial expressions and postures to add drama.

Grammatical meanings expressed in many human languages can be classified
in terms of the different semantic and functional domains they are concerned
with. Here are some examples:
– Argument-structure: Most languages have ways in which the roles of partic-

ipants in events can be made clearer by specifying who does what to whom,
overlaid on the basic phrase structure, for example, by using cases and mor-
phological affixes or by exploiting the sequential ordering of constituents in
the sentence and using specific prepositions.

– Tense-Aspect: Many languages have ways to be more precise about the rela-
tion of an event with respect to the time of discourse (present/past/future) or
to highlight the internal structure of events (ongoing, terminated, repetitive,
etc.).

– Modality: Many languages have ways to express the epistemic attitudes of
the speaker with respect to the information that is provided in the sentence.
For example, they may specify whether the state of affairs described by the
main verb is true or only hypothesized, what evidence was available and how
this was acquired, whether the source is reliable, etc.

– Determination: Many languages have ways to be more precise about how the
referent of a nominal phrase can be accessed, usually in terms of different
articles such as “the", “some", or “every", or in terms of marking morpholog-
ically the distinction between mass or count nouns or definite and indefinite
referents.

12 L. Steels

– Social status: Many languages express the social attitude of the speaker or
the relation between speaker and hearer by adding morphological markers
or particles, or by choosing other lexical items. A very simple example is the
use of “tu" versus “vous" for the second person pronoun in French.

– Information structure: Many languages are able to provide information re-
lated to discourse, such as what object is assumed to be known from earlier
conversation, what information addresses a question posed in the dialog,
what the main highlighted topic is, etc. For example, German marks a con-
stituent as being the focal topic of a sentence by moving it into first sentence
position (fronting) or by stressing it.

Not all grammatical meanings are explicitly expressible in all languages, and for
each language there are significant differences in the semantic distinctions they
express and how they do it. What is common, however, is that grammatical
meanings are mapped to syntactic forms through the intermediary of semantic
and syntactic categorizations that are language-specific (Figure 5).

!"#$%$&'' ()*+'

,"+#$-.'

/#0"&)*%1#-)$1'

,2$0#.-.'

/#0"&)*%1#-)$1'

Fig. 5. The grammar square depicts the different associations between meaning and
form. Meaning is directly related to a specific form in the case of lexical constructions.
But in the case of grammatical meanings it goes through the intermediary of semantic
and syntactic categorizations.

This multi-layered character of the mapping from meaning to form is char-
acteristic for grammar, in opposition to the lexicon, which immediately maps
aspects of meaning to aspects of form. Grammatical mappings are always bi-
directional. In production, they are traversed from meaning to form and in pro-
duction from form to meaning. The reason why languages use indirect mappings
for grammar, rather than going directly from meaning to form, is that this allows
the definition of more abstract relations between meaning and form and because
other factors may play a role in the mapping so that more information can be
packed into the same material.

Here is a concrete example of this multi-layered mapping for the domain
of argument structure (illustrated in more detail in [47]). Specific participant
roles such as the pusher of a push-event are not directly mapped onto syntac-
tic markers, because that would require a large set of markers, specific to each

Design Methods for Fluid Construction Grammar 13

verb. Instead, participant roles are semantically categorized in terms of abstract
semantic roles such as agent, patient, beneficiary, instrument, location, etc., and
these semantic roles are first mapped onto syntactic cases such as nominative,
accusative, dative, genitive (or in language without a case system onto gram-
matical relations such as subject, direct object, indirect object, oblique object),
before they are mapped to surface markers such as morphological affixes or con-
stituent orderings. At each step, context, and hence additional meaning, can
play a role. For example, the semantic role of agent can be mapped to subject
(or nominative) in active sentences only. When the speaker wants to highlight
the patient, he can make it the subject, as in “the block was pushed to the edge
of the table".

Fig. 6. Instantiation of the grammar square for argument structure. Participant roles
in events are not directly mapped to specific markers but through the intermediary
of abstract semantic categorizations in the form of semantic roles, such as agent or
instrument, and abstract syntactic categorizations in the form of grammatical relations
or cases, such as subject or nominative.

Semantic and syntactic categorizations cannot always be so neatly distin-
guished. For example, in the case of tense, many languages use a more direct
mapping from semantic categorizations of the time moment of an event (present -
past - future) to surface realizations based on auxiliaries or morphological mark-
ers (as in: come - came - will come). Nevertheless, in analyzing the grammar of a
language it is extremely useful to keep the distinction in mind between the four
layers of the grammar square and to study what contextual factors influence the
mapping from one layer to another.

2.5 Analysis Steps

The various insights into the nature and functioning of human language briefly
discussed in the previous subsections, translate into a series of steps for analyzing
a fragment of language.

1. The first step is to delineate the primary semantic domain of interest and
the communicative functions that will be investigated. For example, a study
might focus on the domain of spatial language, which uses spatial relations and

14 L. Steels

perspective to identify objects in a scene, as in “the ball left of the box" [22].
Another study might focus on the description of events, using sentences such
as “the ball rolled off the table", which would imply a classification of event
types and aspects of events that are to be made explicit [45]. Next, the kind
of world model that will be derivable from perceptual and motor processing
and the information that needs to be stored in the discourse model has to be
determined as well as the concepts that are available in this semantic domain,
such as spatial categories, event types, or image schemas for objects. Finally,
the cognitive operations that will make use of these building blocks need to be
identified as well as the networks that are needed to achieve the communicative
functions in the chosen domain (as shown in Figure 2).

2. The next step is to survey which meanings can be directly covered by words
in the lexicon. Typically, words will introduce certain concepts, and each word
will have a particular potential for expressing semantic functions. The potential
comes from the lexical categories to which the word belongs, which allow it to
have certain possible syntactic functions.

3. The third step focuses on phrases, identifying what kind of phrases are
available in the language fragment under investigation, how each phrase com-
bines the networks contributed by its constituents, and what additional meanings
are to be added. This step also investigates what syntactic and semantic con-
straints have to be present, for example, what ordering constraints have to be
imposed among the constituents, whether there are agreement relations between
constituents, which features should percolate from constituents to the phrase as
a whole, and so on.

4. In addition to the primary semantic domains which determine the basic
skeleton and vocabulary of a language fragment, there may be secondary seman-
tic domains that are overlaid on top of the primary domains, expressing gram-
matical meanings such as modality, tense, aspect, determination, or information
structure. For each of these domains, the analyst needs to pin down what has
to be represented in the world model or the discourse model as well as how this
information can be derived through sensory-motor processing or inference. The
domains will also introduce additional cognitive operations and subnetworks.
Secondary domains usually do not introduce new syntactic functions, but they
operate through syntactic and semantic features that translate into morpholog-
ical markers, grammatical function words, modulations of constituent ordering
or phonetic markings (intonation, stress). The grammar square mappings from
meanings to semantic categorizations, syntactic categorizations, and finally to
markers must be worked out and in particular the contextual constraints that
determine each of the steps in the mapping.

3 The Design Level

In the previous section, the basic linguistic outlook used in Fluid Construction
Grammar was briefly presented, and a set of methodological steps was intro-
duced that help to structure the investigation of some fragment of a language.

Design Methods for Fluid Construction Grammar 15

However, it remains an enormous challenge to turn this kind of analysis into
a formal system that is effective in parsing and producing utterances, particu-
larly because language is to a large extent non-modular and multi-functional.
The same element (for example, the same word) can have multiple functions
and play a role in expressing different semantic domains, and constraints from
many different levels (pragmatic, semantic, syntactic, morphological and pho-
netic) often interact strongly. This multi-functional nature of linguistic compo-
nents introduces enormous challenges for grammar design, both to master the
complexity of defining constructions that capture all constraints, but also to
avoid combinatorial explosions in the search space built up during parsing or
production.

FCG uses several techniques from computer science for handling complexity.
The first one is to make a distinction between a design level and an operational
level, in the same way computer programming makes a distinction between a
high level programming language and a low level machine-oriented language.
In the case of FCG, the operational level is based on the detailed definition of
operational constructions that are applied through a process of matching and
merging. At the design level, these constructions are defined more abstractly
using a series of templates. Each template deals with a particular aspect of a
construction and helps to implement a certain design pattern.

3.1 Design Patterns

The notion of a design pattern was originally introduced by architects [1]. A
design pattern captures a particular solution to a design problem that can be
reused, after adaptation to local circumstances. For example, a dome structure
can be used for spanning large spaces, but many different types of domes are built
depending on the materials used or the aesthetic qualities the architect is after.
Design patterns are also very common in software engineering where they refer
to reusable approaches for tackling a class of software design problems [12]. They
are also an important concept in biology, where they refer to a particular class
of physiological and metabolic solutions for recurrent problems like maintaining
body temperature, extracting oxygen, building a basic body plan [5]

In human languages, we also find common design patterns across language
families. The most obvious one is to build phrases by grouping words (or phrases)
in order to express compositional meanings. The nature and complexity of phrases,
and which mechanisms are used to indicate which constituents can be grouped
together, differs significantly from one language to another. Nevertheless, there
are a lot of common mechanisms.

Another design pattern commonly used in human languages is that of agree-
ment systems. Agreement means that some syntactic or semantic features of one
constituent are shared with other constituents. Agreement is used to indicate
that there is some sort of linking between constituents, for example, because
they are components of the same phrase or because they share the same refer-
ent. Thus, the subject and the verb of a sentence agree with respect to number
and person in English. In German, articles and nouns which belong to the same

16 L. Steels

nominal phrase agree for number, gender, and case. In Spanish, pronouns agree
with respect to gender and number with the referring expression that introduces
their referent. The features entering in agreement relations are typically derived
based on semantic categorizations (for example the distinction between singular
and plural number) or on the syntactic context (for example the case distinction
between nominative and dative).

Features are either associated with words themselves, or they are explicitly
marked through morphology or phonetic variations of the word stem. Within
phrases, they often percolate up from one constituent (usually the so called head
of the phrase) to the phrase as a whole. For example, definiteness percolates from
the determiner to the determiner-nominal phrase. Individual languages differ in
terms of when they use agreement relations, which features are supposed to
agree with each other, and which features percolate. But again, we find some
common fundamental mechanisms. For example, features usually come in feature
bundles , and often a particular word or phrase has multiple alternative feature
bundles so that special processing techniques are needed to avoid combinatorial
explosions [48]. A concrete example for Polish agreement is discussed in a later
chapter of this book [16].

Another example of a design pattern is field topology. Field topology is a way
to introduce more flexibility and sophistication in the use of word order within a
phrase. In most languages, it is sufficient to express ordering constraints among
the constituents of a phrase with the meets-relation, which is valid between two
constituents X and Y if X immediately precedes Y. But sometimes this kind of
representation is too weak because the ordering relations are exploited to express
many different grammatical meanings. This is the case, for example, in German
sentences, where almost any constituent can be put in front of the sentence in
order to emphasize that it is the topic, for example the answer to a recently
asked question.

Field topology associates with each phrase a set of fields. A field can capture
one or more constituents, depending on a number of interacting constraints, and
the final ordering of the sentence is then derived by sequentially retrieving the
fillers of each field. For example, in German, five fields are typically hypothesized.
There is the so called Vorfeld, or front field, which may capture constituents
that express the topic of the sentence. The finite verb always comes into the
second field (the linke Klammer, or left bracket), followed by three fields for other
constituents: the Mittelfeld, or middle field, the rechte Klammer, or right bracket
and the Nachfeld, or end field. The rechte Klammer contains the non-finite verb.
Most implementations of German constituent order use a field topology approach
by postulating these five fields. A worked out example in FCG is discussed in
[24].

Although field topology has been primarily used for German (and Dutch)
sentence constituent ordering, there are many other ordering phenomena that
can potentially be handled using this design pattern. For example, the ordering of
multiple adjectives in French follows a particular sequence, with some adjectives
appearing before and some after the noun [19]. The ordering is mostly based

Design Methods for Fluid Construction Grammar 17

on the semantic categories to which these adjectives refer. For example, size
adjectives appear before the noun whereas color adjectives come after, as in “un
grand ballon rouge" (literally: "a big ball red", to mean "a big red ball") We can
handle this phenomenon as well by postulating a set of fields for each type of
adjective. During production, these fields capture the adjectives that satisfy the
constraints of the field, and the nominal phrase is then constructed by collecting
the fillers of these fields sequentially, which are non-empty.

Agreement and field topology are design patterns oriented towards the syn-
tactic structuring and morphological markings of sentences. There are other
design patterns that are oriented towards semantic aspects. For example, the
networks contributed by individual words need to be linked together in phrases,
and networks from different phrases need to be linked together into networks
defining the meaning of larger phrases [37]. A design pattern for handling this
kind of issue is known as a linking pattern.

A linking pattern relies on the definition of the external arguments of subnet-
works supplied by words or constituents. These arguments can be linked to the
external arguments supplied by other subnetworks. For example, the cognitive
operation filter-set-class, which filters a set of objects based on a class, has
two external arguments: one for the class and the other for the filtered set. The
cognitive operation select-unique-element selecting the unique element out
of a singleton has two external arguments as well: one for the set from which
an element has to be selected and the other for the chosen element. When these
two cognitive operations are combined in a single network (as in the phrase “the
mouse", where “mouse" introduces the class identifier), the new network has
only two external arguments: One for the selected element and another for the
original source set as used by the filter operation. Internally, the non-external
arguments are linked together in the combined network so that the set derived
by filter-set-class on the basis of the class ‘mouse’ is the set from which the
element is selected by select-unique-element.

3.2 Constructions

A construction is the basic computational unit at the operational level in FCG. It
contains a semantic pole that captures aspects of pragmatics, meaning, seman-
tic structure and semantic categorization, and a syntactic pole that captures
aspects of syntactic structure, syntactic categorization, as well as phonetic and
morphological marking. Constructions typically have a set of units for the differ-
ent constituents. Information is represented in terms of features associated with
each of the units.

The data structure built during the parsing and production of a particular
sentence is called a transient structure. It has the same division into units and
features as a construction, as well as a semantic and a syntactic pole. Initially
the transient structure contains only one unit (usually called the top-unit), which
contains everything that is known when processing starts. In parsing, it contains
a feature form that contains a description of all the form characteristics of the

18 L. Steels

utterance. In production, the top-unit contains a feature meaning that contains
the complete meaning which the speaker wants to express.

A construction is viewed as a bi-directional association between meaning (the
semantic pole) and form (the syntactic pole). In production the semantic pole of
the construction is matched against the semantic pole of the transient structure
in order to check whether the construction is applicable, and then the informa-
tion contained in the syntactic pole of the construction is added by merging it
with the syntactic pole of the transient structure. In parsing, the syntactic pole
of the construction is matched against the transient structure to see whether
the construction is applicable, and if this is the case then information from the
semantic pole is merged with the transient structure so as to progressively re-
construct the semantic structure and meaning of the sentence. One construction
thus prepares the ground for the application of the next construction, so that
we get a chain of construction applications (see Figure 7). Usually there is more
than one construction that can apply at any point in time, and we therefore get
a search space in which different search paths have to be tried out to find the
best possible solution.

UNIT
A

CXN
1

CXN
2

CXN
3

...

CXN
72

CXN
73

UNIT
A

UNIT
B

UNIT
C

initial
transient
structure

constructions

CXN
1

CXN
2

CXN
3

...

CXN
72

CXN
73

transient structure
modified by

cxn 3 and 72

MATCH

MERGE

MERGE
MATCH

MATCH

UNIT
A

UNIT
B

UNIT
D

UNIT
C

...

constructions
transient structure

modified by
cxn 2

MERGE

Fig. 7. Constructions are applied in a chain starting from an initial transient structure.
Application either fails in mid-stream or continues until a complete sentence can be
produced (in language production) or the meaning could be completely reconstructed.

Constructions are complicated because of their bi-directional nature. It is
not enough to say, for example, that a determiner-nominal phrase consists of a
determiner and a nominal, we also need to say when such a determiner-nominal
phrase should be used (in production) and how the meaning of the determiner
and nominal is to be combined (in parsing). We also need to specify the agree-

Design Methods for Fluid Construction Grammar 19

ment relations, percolations, and linkings of subnetworks. An additional factor
that makes constructions complicated is that both syntactic and semantic issues
need to be considered at the same time. This leads to much greater efficiency
compared to a separation of the grammar into different layers or a decomposition
of linguistic decisions into small steps. A construction should take as many con-
straints as possible into account before building more structure, so that search
gets maximally avoided. On the other hand, it makes it much harder to write
grammars.

To make the analysis and implementation of grammars nevertheless doable,
FCG divides constructions up into different construction sets. This helps also to
streamline the processing of constructions because all constructions in one set
can be considered before the next set in the sequence is tried. Here are some
example construction sets that are typically found for most applications:

1. Lexical constructions introduce lexical items, i.e. word stems. They specify
the meaning, external arguments, phonetic, syntactic and semantic cate-
gories, and form of a word.

2. Morphological constructions introduce morphemes, i.e. prefixes and suffixes
that are attached to word stems. They specify with what word the morpheme
can be combined, the form the combintion takes, syntactic and semantic cat-
egorizations, the form of the morpheme, and possibly its phonetic features.

3. Functional constructions are concerned with defining associations between
lexical categories, syntactic functions, and semantic functions. They define
potential values. The actual values are decided based on the syntactic and
semantic context.

4. Phrasal constructions are concerned with capturing constraints on phrases:
What constituents there are, what the semantic constraints on constituents
are, which semantic and syntactic function they should have, what kind of
agreement, ordering, and percolation phenomena must be taken into account.

There are usually additional construction sets that deal with the expression of
grammatical meaning. For example, it could be that a language expresses argu-
ment structure using semantic roles and cases, and this would then lead to the
inclusion of argument-structure constructions [47]. Or it could be that a language
has an elaborate system of aspect which would require constructions that han-
dle the semantic and syntactic features related to aspect so that morphological
constructions can mark them with external forms [13].

3.3 Templates

A design pattern does not directly translate into a particular construction be-
cause one construction will integrate aspects of many different design patterns,
and a single design pattern has an impact on many different constructions. For
example, to implement agreement requires that lexical constructions, morpholog-
ical constructions, and phrasal constructions introduce syntactic and semantic
features and that agreement relations are defined within the context of the rel-
evant phrasal constructions. It is nevertheless possible to capture some of the

20 L. Steels

basic aspects of design patterns into abstractions that hide a lot of the imple-
mentation details. FCG does this using templates.

A template determines some of the aspects of a construction. It has a number
of slots which act as parameters for how exactly the template should be instan-
tiated. When a template is applied to a construction it extends the construction
as a side effect (Figure 8). Each construction has a unique name so that tem-
plates can retrieve the construction they want to have an impact on. Moreover,
the units in a construction are associated with variable-names so that they can
be used by different templates to add more information.

!"#$%"#&'()&*+,-&(./*0

'&1(%234#45(./*0

'&1(%234#45(

#6&5&$"*0

'&1(%234#45(

4)3&&7&*$0

'&1(%234#45(

5+*6+*)0

'&1(%234#45(

3&89+3&0

Fig. 8. Different templates progressively add more structure to a construction. Each
template adds information relevant to a particular design pattern. For example, the
def-phrasal-agreement template adds mechanisms to implement the relevant agree-
ment relations to the postposed-genitive-cxn.

The general syntax for using a template takes the following form:

(template-name construction-name optional-parameters
:slot-name-1 value-name-1

...
:slot-name-n value-name-n)

The set of possible templates is open, and a grammar designer implements the
specific templates required for the language phenomena that he or she is inter-
ested in and from then on uses these templates. There are libraries of templates
made available with each FCG release. The more specific templates are, the eas-
ier it is to focus on the specific linguistic aspects of the language being studied
because computational issues are hidden as much as possible. But the less they
will be relevant for other languages.

The values of slots can either be symbols, lists of symbols, or expressions
using the same special operators as used at the operational level. FCG uses logic
variables as commonly used in logic programming languages. They are denoted
by putting a question mark in front of the name of the variable. Variables get
bound as a side effect of the matching and merging process, either to constants
or to other variables. (Details of FCG-variables, special operators, and the basic
unification operations that use them are discussed in a follow up chapter [10].)

Design Methods for Fluid Construction Grammar 21

Here are a few examples of templates. There are first of all some ‘shell tem-
plates’ that create a shell for a construction with a given name. The template
also puts the construction in a particular construction set. Shell templates are
of the form

(def -construction-type construction-name
... invocation of other templates ...)

Typical names for shell templates are def-lex-cxn, def-morph-cxn, def-fun-cxn,
def-phrasal-cxn, etc., to build lexical, morphological, functional or phrasal
constructions respectively.

For example, let us initialize the definition of a lexical construction called
mine-cxn for defining the word “mine", as it may appear in possessive construc-
tions, such as “this house of mine". The process of building this construction
starts with the creation of a shell using the def-lex-cxn template. Only the
name of the construction has to be supplied:

(def-lex-cxn mine-cxn)

Next, there are typically templates that define the basic skeletal structure of
each construction. For example, lexical constructions primarily associate mean-
ing with a string. Thus there is a template called def-lex-skeleton with slots
for :meaning and :string.

(def-lex-skeleton mine-cxn
:meaning (== (context ?context)

(dialog-participant ?indiv speaker ?context))
:string "mine"))

The linking design pattern requires defining the external arguments of the sub-
network introduced by this lexical item, which is usually done with an extra slot
called :args in the def-lex-skeleton template:

(def-lex-skeleton mine-cxn
:meaning (== (context ?context)

(dialog-participant ?indiv speaker ?context))
:args (?indiv)
:string "mine"))

Syntactic and semantic categorizations are associated with lexical items by
another template, called def-lex-cat. It has a slot :sem-cat for the semantic
categorizations and a slot :syn-cat for the syntactic categorizations:

(def-lex-cat mine-cxn
:sem-cat (==1 (sem-function possessive))
:syn-cat (==1 (lex-cat pronoun)

(person 1st)
(number singular)
(case genitive)))

22 L. Steels

The semantic function of “mine" is that of possessive. From a syntactic side, it
is a 1st person, singular pronoun in the genitive case. All of this is of course
meant to be an example. FCG allows the grammar designer to use any kind of
feature deemed necessary. Templates can also incorporate more information or
less, depending on preferred implementation style. For example the syntactic and
semantic categorizations could also be put in a single lexical template together
with the meaning and string.

Here is another more elaborate example to illustrate the use of templates
for building constructions (discussed at length in [40]). It defines a possessive
phrasal construction, underlying a phrase such as “this house of mine". The
possessive phrasal construction involves two constituents: a nominal phrase (“this
house") and a possessive pronominal “mine". The construction itself is called
postposed-genitive-cxn. It starts with the creation of a shell that makes this
construction a member of the set of phrasal constructions:

(def-phrasal-cxn postposed-genitive-cxn)

Next, the def-phrasal-skeleton template is used to introduce units both for
the phrase as a whole, with a slot called :phrase, and for the different con-
stituents, with a slot called :constituents. The constituents are defined in
terms of their semantic functions, syntactic functions, lexical categories, phrase
types, or syntactic and semantic categorizations. Information is provided on the
phrase-type of the parent and its possible syntactic and semantic functions:

(def-phrasal-skeleton postposed-genitive-cxn
:phrase
(?possessive-nominal-phrase

:sem-function referring
:phrase-type nominal-phrase)

:constituents
((?nominal-unit

:sem-function referring
:phrase-type nominal-phrase)

(?pronominal-unit
:sem-function possessive
:lex-cat pronoun
:syn-cat (==1 (case genitive)))))

The variables that are used for the constituents (i.e. ?nominal-unit, ?pronominal-unit)
and for the parent phrase (i.e. ?possessive-nominal-phrase) can be used by
other templates to address these units and add more information. Other variables
used in feature values can also be used across templates.

Other templates implement other design patterns. For example, the post-
posed genitive construction requires that the number of the nominal unit perco-
lates to the possessive nominal phrase as a whole. This is specified with a tem-
plate called def-phrasal-agreement. For all constituents that share features
and for the parent phrase in which features percolate up from the constituents,
the def-phrasal-agreement lists the following:

Design Methods for Fluid Construction Grammar 23

(def-phrasal-agreement postposed-genitive-cxn
(?possessive-nominal-phrase

:syn-cat (==1 (number ?number)
(is-definite ?definiteness)))

(?nominal-unit
:syn-cat (==1 (is-definite ?definiteness)

(number ?number))))

The variables ?possessive-nominal-phrase and ?nominal-unit are used to
retrieve which units are involved, and the slot-values specify which syntactic
and/or semantic categories have to agree. Use of the same variable name indi-
cates that this indicates that an agreement relation is established. For exam-
ple, ?number of the possessive nominal phrase is shared with ?number of the
?nominal-unit. Thanks to the unification operation, bindings can flow in both
directions: It is not only possible that the number value propagates up from the
nominal-unit to the phrase but also that it propagates down from the nominal
phrase to the nominal unit.

Phrasal constructions may add some meaning of their own, and they may
add form constraints over and above the form constraints supplied by indi-
vidual constituents, which is usually specified with another template called
def-phrasal-require. It has a slot for constructional meaning, called :cxn-meaning,
and a slot for constructional form, called :cxn-form. The postposed-genitive-cxn
illustrates how the construction adds a possessive relation as part of the mean-
ing, a grammatical function word, namely “of", and ordering relations between
these components:

(def-phrasal-require postposed-genitive-cxn
(?possessive-nominal-phrase

:cxn-meaning (== (possessive ?referent-nominal
?referent-pronominal))

:cxn-form (== (meets ?nominal-unit ?word-of)
(string ?word-of "of")
(meets ?word-of ?pronominal-unit))))

As a final example, we use a template called def-phrasal-linking, to es-
tablish the linking between the external arguments of the constituents and the
parent phrase [36]. The template simply lists for each constituent which external
arguments are involved and if the same variable-name is used they are assumed
to be linked. The unification operation takes care of the binding of the relevant
variables.

24 L. Steels

(def-phrasal-linking postposed-genitive-cxn
(?possessive-nominal-phrase

:args (?referent-nominal))
(?nominal-unit

:args (?referent-nominal))
(?pronominal-unit

:args (?referent-pronominal)))

4 The Operational Level

This paper advocates that the design of a lexicon and grammar for a particular
language fragment should proceed in a top-down manner, starting from an anal-
ysis at the linguistic level, identifying the semantic domains and functions, and
the representations and communications functions that need to be expressed in
the language and how they are expressed. It then moves to the design level with
the identification of design patterns and the templates that actualize them. For
example, to implement agreement requires templates that add syntactic and se-
mantic categorizations to units and templates that specify what agreement and
percolation relations need to be established for a particular phrase.

We now arrive at the operational level, which is the level at which construc-
tions with all their details have to be defined. Although constructions can be
defined by hand, it is much easier to do so using templates. Nevertheless it is
import to understand the operational level also, partly to be able to follow in
detail what changes a construction has made and why it does (or does not) trig-
ger, and partly to be able to extend or adapt the set of available templates. The
remainder of this section provides a brief introduction to the main structures
and operations at the operational level. The reader is referred to a later chapter
[10] for more details, and to the examples further discussed in this book or in
other publications [41].

4.1 Representing Transient Structures

FCG uses feature structures for representing the information that is built up
during parsing and production, thus following generally accepted practices in
contemporary computational linguistics, The so called transient structure starts
in parsing with all the information that can be extracted from the utterance
(strings, ordering, possibly phonetic information) and progressively reconstructs
semantic and syntactic structures and meanings. In production, the transient
structure contains initially only the meaning that needs to be expressed. Differ-
ent constructions cover parts of this meaning, progressively building up phrasal
structures and constraining the form of the sentence until a concrete sentence
can be derived.

Design Methods for Fluid Construction Grammar 25

3
1
/
0
7
/
1
0
 1

2
:3

9
B
a
b
e
l
w

e
b
 i
n
te

rf
a
c
e

P
a
g
e
 1

 o
f

1
h
tt

p
:/

/
lo

c
a
lh

o
s
t:

8
0
0
0
/

to
p

s
e
m

-s
u

b
u

n
it
s

to
p

(
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
1
2
)

s
y
n

-s
u

b
u

n
it
s

P
a

rs
in

g
 "

th
e

 m
o

u
s
e

"

A
p

p
ly

in
g

c

o
n

s
tr

u
c

ti
o

n
 s

e
t

(5
)

 i
n

 d
ir

e
c

ti
o

n
 !

F
o

u
n

d
 a

 s
o

lu
ti

o
n

in
it
ia

l
s
tr

u
c
tu

re
to

p

a
p

p
lic

a
ti
o

n
p

ro
c
e
s
s

q
u

e
u

e

a
p

p
lie

d
c
o

n
s
tr

u
c
ti
o

n
s

re
s
u

lt
in

g
s
tr

u
c
tu

re

to
p

(
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
1
2
)

M
e

a
n

in
g

:
(
(
c
o
n
t
e
x
t

?
c
o
n
t
e
x
t
-
6
7
)

(
u
n
i
q
u
e
-
d
e
f
i
n
i
t
e

?
i
n
d
i
v
-
3
7

?
b
a
s
e
-
s
e
t
-
8
1
)

(
m
o
u
s
e

?
b
a
s
e
-
s
e
t
-
8
1

?
c
o
n
t
e
x
t
-
6
7
)
)

re
s
e
t

s
e
m

s
y
n

in
it
ia

l
*

m
o

u
s
e

-c
x
n

 (
t)

,
n

o
u

n
-n

o
m

in
a
l-

c
x
n

,
th

e
-c

x
n

 (
t)

,
a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

d
e

te
rm

in
e

r-
n

o
m

in
a

l-
p

h
ra

s
e

-c
x
n

a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

th
e
-c

x
n

 (
t)

m
o

u
s
e

-c
x
n

 (
t)

d
e
te

rm
in

e
r-

n
o

m
in

a
l-

p
h

ra
s
e

-c
x
n

a
rt

ic
le

-d
e
te

rm
in

e
r-

c
x
n

th
e
-c

x
n

 (
t)

n
o

u
n

-n
o

m
in

a
l-

c
x
n

m
o

u
s
e

-c
x
n

 (
t)

m
e
a
n

in
g

s
e
m

-s
u

b
u

n
it
s

fo
o

tp
ri
n

ts

a
rg

s

s
e
m

-c
a
t

n
o

m
in

a
l-

p
h

ra
s
e

-1
2

(
(
c
o
n
t
e
x
t

?
c
o
n
t
e
x
t
-
6
7
)
)

(
m
o
u
s
e
-
1
2

t
h
e
-
1
1
)

(
d
e
t
e
r
m
i
n
e
r
-
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
c
x
n
)

(
?
i
n
d
i
v
-
3
7

?
c
o
n
t
e
x
t
-
6
7
)

(
(
s
e
m
-
f
u
n
c
t
i
o
n

r
e
f
e
r
r
i
n
g
)
)

fo
o

tp
ri
n

ts

m
e
a
n

in
g

s
e
m

-c
a
t

a
rg

s

th
e
-1

1

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

(
(
u
n
i
q
u
e
-
d
e
f
i
n
i
t
e

?
i
n
d
i
v
-
3
7

?
b
a
s
e
-
s
e
t
-
8
1
)
)

(
(
d
e
t
e
r
m
i
n
a
t
i
o
n

d
e
f
i
n
i
t
e
)

(
s
e
m
-
f
u
n
c
t
i
o
n

r
e
f
e
r
e
n
c
e
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)
)

(
?
i
n
d
i
v
-
3
7

?
b
a
s
e
-
s
e
t
-
8
1
)

fo
o

tp
ri
n

ts

m
e
a
n

in
g

s
e
m

-c
a
t

a
rg

s

m
o

u
s
e

-1
2

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

(
(
m
o
u
s
e

?
b
a
s
e
-
s
e
t
-
8
1

?
c
o
n
t
e
x
t
-
6
7
)
)

(
(
i
s
-
a
n
i
m
a
t
e

+
)

(
c
l
a
s
s

o
b
j
e
c
t
)

(
s
e
m
-
f
u
n
c
t
i
o
n

i
d
e
n
t
i
f
i
e
r
)

(
i
s
-
c
o
u
n
t
a
b
l
e

+
)
)

(
?
b
a
s
e
-
s
e
t
-
8
1

?
c
o
n
t
e
x
t
-
6
7
)

s
e
m

s
y
n

fo
rm

s
y
n

-s
u

b
u

n
it
s

s
y
n

-c
a
t

fo
o

tp
ri
n
ts

n
o

m
in

a
l-

p
h
ra

s
e

-1
2

(
(
m
e
e
t
s

t
h
e
-
1
1

m
o
u
s
e
-
1
2
)
)

(
m
o
u
s
e
-
1
2

t
h
e
-
1
1
)

(
(
i
s
-
d
e
f
i
n
i
t
e

+
)

(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
p
h
r
a
s
e
-
t
y
p
e

n
o
m
i
n
a
l
-
p
h
r
a
s
e
)
)

(
d
e
t
e
r
m
i
n
e
r
-
n
o
m
i
n
a
l
-
p
h
r
a
s
e
-
c
x
n
)

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n

ts

th
e
-1

1

(
(
s
t
r
i
n
g

t
h
e
-
1
1

"
t
h
e
"
)
)

(
(
i
s
-
d
e
f
i
n
i
t
e

+
)

(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
l
e
x
-
c
a
t

a
r
t
i
c
l
e
)

(
s
y
n
-
f
u
n
c
t
i
o
n

d
e
t
e
r
m
i
n
e
r
)
)

(
t
h
e
-
c
x
n

a
r
t
i
c
l
e
-
d
e
t
e
r
m
i
n
e
r
-
c
x
n
)

fo
rm

s
y
n

-c
a
t

fo
o

tp
ri
n

ts

m
o

u
s
e

-1
2

(
(
s
t
r
i
n
g

m
o
u
s
e
-
1
2

"
m
o
u
s
e
"
)
)

(
(
n
u
m
b
e
r

s
i
n
g
u
l
a
r
)

(
l
e
x
-
c
a
t

n
o
u
n
)

(
s
y
n
-
f
u
n
c
t
i
o
n

n
o
m
i
n
a
l
)
)

(
m
o
u
s
e
-
c
x
n

n
o
u
n
-
n
o
m
i
n
a
l
-
c
x
n
)

F
ig

.9
.
G
ra
ph

ic
al

di
sp
la
y
of

a
tr
an

si
en
t
st
ru
ct
ur
e
w
he

n
pa

rs
in
g
or

pr
od

uc
in
g
“t
he

m
ou

se
”.
E
ac
h
bo

x
re
pr
es
en
ts

a
un

it
w
it
h
it
s
na

m
e
an

d
fe
at
ur
e
va
lu
es
.
A
ll
fe
at
ur
es

of
th
e
se
m
an

ti
c
po

le
s
ar
e
di
sp
la
ye
d
on

th
e
le
ft

si
de

an
d
al
l
fe
at
ur
es

of
th
e
sy
nt
ac
ti
c
po

le
s
on

th
e
ri
gh

t
si
de

.
B
ot
h
po

le
s
ar
e
sh
ow

n
in

m
or
e
de

ta
il
in

F
ig
ur
e
10
.

26 L. Steels

The feature structures used in FCG compose the linguistic structure in terms
of units with features and values. Units have names, and these names can be
bound to variables for reference inside constructions. Consequently, hierarchical
structure is represented explicitly by a feature called subunits filled by names of
all subunits.

The transient structure is decomposed into a semantic pole and a syntac-
tic pole to improve readability and efficiency. The graphical representation in
Figure 9 provides an example of a simple determiner-nominal phrase in (taken
from [42], which explains this example in detail). There is a list notation which
reflects the internal LISP-based implementation of feature structures. Graphical
representations are constructed automatically by the FCG-system and there is
a browser for interactive and selective display (see [23]).

The same feature structure is shown in list notation in Figure 9. The unit
names are in bold and the unit features in italics. In the semantic pole, there
is a unit for top, which has one semantic subunit called nominal-phrase-12.
nominal-phrase-12 has two semantic subunits: mouse-12 and the-11. The
same unit-names are found on the syntactic pole with pending syntactic features.
Indices like 12 or 11 are there to distinguish between instances of a symbol but
do not carry meaning.

((top
(sem-subunits (nominal-phrase-12)))
(nominal-phrase-12
(sem-subunits (mouse-12 the-11))
(meaning ((context ?context-67)))
(args (?indiv-37 ?context-67))
(sem-cat ((sem-function referring)))
(footprints (determiner-nominal-phrase-cxn)))
(the-11
(meaning ((unique-definite ?indiv-37 ?base-set-81)))
(args (?indiv-37 ?base-set-81))
(sem-cat
((determination definite)
(sem-function reference) (is-countable +)))

(footprints (the-cxn article-determiner-cxn)))
(mouse-12
(meaning ((mouse ?base-set-81 ?context-67)))
(args (?base-set-81 ?context-67))
(footprints (mouse-cxn noun-nominal-cxn))
(sem-cat
((is-animate +) (class object)
(sem-function identifier) (is-countable +)))))

<-->
((top

(syn-subunits (nominal-phrase-12)))
(nominal-phrase-12

Design Methods for Fluid Construction Grammar 27

31/07/10 12:43Babel web interface

Page 1 of 1http://localhost:8000/

top

sem-subunits

top

(nominal-phrase-12)

syn-subunits

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(nominal-phrase-12)

Meaning:
((context ?context-67) (unique-definite ?indiv-37 ?base-set-81)
(mouse ?base-set-81 ?context-67))

reset

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), article-determiner-cxn determiner-nominal-phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

meaning

sem-subunits

footprints

args

sem-cat

nominal-phrase-12

((context ?context-67))

(mouse-12 the-11)

(determiner-nominal-phrase-cxn)

(?indiv-37 ?context-67)

((sem-function referring))

footprints

meaning

sem-cat

args

the-11

(the-cxn
article-determiner-cxn)

((unique-definite
?indiv-37
?base-set-81))

((determination
definite)

(sem-function
reference)

(is-countable +))

(?indiv-37 ?base-set-81)

footprints

meaning

sem-cat

args

mouse-12

(mouse-cxn
noun-nominal-cxn)

((mouse
?base-set-81
?context-67))

((is-animate +)
(class object)
(sem-function
identifier)

(is-countable +))

(?base-set-81
?context-67)

sem syn

form

syn-subunits

syn-cat

footprints

nominal-phrase-12

((meets the-11 mouse-12))

(mouse-12 the-11)

((is-definite +)
(number singular)
(phrase-type nominal-phrase))

(determiner-nominal-phrase-cxn)

form

syn-cat

footprints

the-11

((string the-11 "the"))

((is-definite +)
(number singular)
(lex-cat article)
(syn-function
determiner))

(the-cxn
article-determiner-cxn)

form

syn-cat

footprints

mouse-12

((string mouse-12
"mouse"))

((number singular)
(lex-cat noun)
(syn-function nominal))

(mouse-cxn
noun-nominal-cxn)

31/07/10 12:45Babel web interface

Page 1 of 1http://localhost:8000/

top

sem-subunits

top

(nominal-phrase-12)

syn-subunits

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(nominal-phrase-12)

Meaning:
((context ?context-67) (unique-definite ?indiv-37 ?base-set-81) (mouse ?base-set-81 ?context-67))

reset

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), article-determiner-cxn determiner-nominal-phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

meaning

sem-subunits

footprints

args

sem-cat

nominal-phrase-12

((context ?context-67))

(mouse-12 the-11)

(determiner-nominal-phrase-cxn)

(?indiv-37 ?context-67)

((sem-function referring))

footprints

meaning

sem-cat

args

the-11

(the-cxn
article-determiner-cxn)

((unique-definite
?indiv-37
?base-set-81))

((determination
definite)

(sem-function
reference)

(is-countable +))

(?indiv-37 ?base-set-81)

footprints

meaning

sem-cat

args

mouse-12

(mouse-cxn
noun-nominal-cxn)

((mouse
?base-set-81
?context-67))

((is-animate +)
(class object)
(sem-function
identifier)

(is-countable +))

(?base-set-81
?context-67)

sem syn

form

syn-subunits

syn-cat

footprints

nominal-phrase-12

((meets the-11 mouse-12))

(mouse-12 the-11)

((is-definite +)
(number singular)
(phrase-type nominal-phrase))

(determiner-nominal-phrase-cxn)

form

syn-cat

footprints

the-11

((string the-11 "the"))

((is-definite +)
(number singular)
(lex-cat article)
(syn-function
determiner))

(the-cxn
article-determiner-cxn)

form

syn-cat

footprints

mouse-12

((string mouse-12
"mouse"))

((number singular)
(lex-cat noun)
(syn-function nominal))

(mouse-cxn
noun-nominal-cxn)

Fig. 10. Zooming in on the semantic (top) and syntactic (bottom) poles of the transient
structure shown in Figure 9.

28 L. Steels

(syn-subunits (mouse-12 the-11))
(form ((meets the-11 mouse-12)))
(syn-cat
((is-definite +) (number singular)
(phrase-type nominal-phrase)))

(footprints (determiner-nominal-phrase-cxn)))
(the-11
(form ((string the-11 "the")))
(syn-cat
((is-definite +) (number singular)
(lex-cat article) (syn-function determiner)))

(footprints (the-cxn article-determiner-cxn)))
(mouse-12
(form ((string mouse-12 "mouse")))
(syn-cat
((number singular) (lex-cat noun)
(syn-function nominal)))

(footprints (mouse-cxn noun-nominal-cxn))))

Feature structures in FCG do not fundamentally differ from those used in
other feature-structure based formalisms. For example, part of the syntactic
pole of the transient structure in Figure 10 would be represented in many other
unification-based formalisms as follows:

syn-cat

phrase-type nominal-phrase
is-definite +
number singular



syn-subunits





form
[
string "the"

]

syn-cat


is-definite +
number singular
lex-cat article
syn-function determiner





form

[
string "mouse"

]
syn-cat

number singular
lex-cat noun
syn-function nominal







The main difference concerns the use of names for units and the use of logic
variables for representing values of features that are unknown.

4.2 Representing Constructions

Constructions use the same representations as transient structures: They consist
of units with features and values, which are matched against transient structures

Design Methods for Fluid Construction Grammar 29

and then merged so that information present in the construction, but not yet
in the transient structure, gets added. Constructions are more abstract than
transient structures. They leave out information so that the construction matches
with a wide range of transient structures. They contain variables that can be
bound to specific values contained in a transient structure. And they may specify
partial values using a set of special operators, such as an includes operator (if
only some of the elements have to be present), a uniquely includes operator (if
a particular element can appear only once), an excludes operator (if an element
should not occur), and so on.

Different templates build up different elements of a construction. For exam-
ple, the lexical construction for “mine" was defined earlier using the following
templates:

(def-lex-cxn mine-cxn
(def-lex-skeleton mine-cxn

:meaning (== (context ?context)
(dialog-participant ?indiv speaker ?context))

:args (?indiv)
:string "mine")

(def-lex-cat mine-cxn
:sem-cat (==1 (sem-function possessive))
:syn-cat (==1 (lex-cat pronoun)

(person 1st)
(number singular)
(case genitive))))

The operational construction based on these templates looks as follows, with the
semantic and syntactic pole separated by a double arrow <–>:

(def-cxn mine-cxn
((?top-unit
(tag ?meaning

(meaning
(== (context ?context)

(dialog-participant ?indiv speaker ?context))))
(footprints (==0 mine-cxn lex)))
((J ?word-mine ?top-unit)
?meaning
(args (?indiv))
(footprints (==1 mine-cxn lex))
(sem-cat (==1 (sem-function possessive)))))

<-->
((?top-unit
(footprints (==0 mine-cxn lex))
(tag ?form

(form (== (string ?word-mine "mine")))))
((J ?word-mine ?top-unit)

30 L. Steels

?form
(footprints (==1 mine-cxn lex))
(syn-cat
(==1 (lex-cat pronoun)

(person 1st)
(number singular)
(case genitive))))))

In production, the construction is applied from the semantic pole to the syntactic
pole. It looks out whether a particular meaning is present in the ?top-unit
(which is the initial top unit of a transient structure). If that meaning is found,
the construction creates a new sub-unit (bound to the variable ?word-mine) and
hangs it from the top-unit on the semantic side. It also adds information about
the external arguments of the word and its semantic categorizations. On the
syntactic side, the construction creates a syntactic subunit and adds information
about the word form (the string “mine") as well as syntactic categorizations
concerning lexical-class, person, number and case.

In parsing, the construction is applied from the syntactic pole to the seman-
tic pole. It looks out for the presence of a particular string (namely “mine")
in the top-unit. If that is the case, the construction builds a new unit bound
to ?word-mine and hangs it from ?top-unit. The string is moved from the
form feature of the top-unit to the form feature of the new unit, and syntac-
tic categorizations are added. On the semantic side, the construction creates a
new semantic subunit and adds information about its meaning and its semantic
categorization.

Parts of this operational construction are clearly based on the elements
supplied by the templates: the :meaning, :string and :args come from the
def-lex-skeleton template, and the :syn-cat and :sem-cat come from the
def-lex-cat template. However, more is needed to make a construction fully
operational. Choices have to be made as to whether information is put into the
semantic pole or the syntactic pole, and if triggering the construction or addi-
tive in merging should be conditional. Other issues concern the question of how
new units are built and how information is moved to them, and how the recur-
sive application of constructions is regulated. This section briefly discusses some
procedural annotations in operational constructions that have been designed for
these purposes.

4.3 Procedural Annotations

Procedural annotations consist of extra information supplied with a construction
to carry out structure building operations or to avoid that constructions keep
applying indefinitely. Structure building requires two operations: a way to create
new units and hang them somewhere from an existing unit in the hierarchy, and
a way to associate information with the new unit, possibly by moving features
or values that were located elsewhere.

Design Methods for Fluid Construction Grammar 31

The J-operator The J-operator is the main FCG primitive for building hier-
archical structure [11]. It has three arguments: a daughter-unit, a parent-unit,
and possibly a set of pending-subunits. These are either specified with concrete
names or with variables that have been bound elsewhere in the matching or
merging process. When the daughter-unit is an unbound variable at the time of
merging, a new unit will be created for it. For example, in the mine-cxn above,
the following expression evokes the J-operator.

(J ?word-mine ?top-unit)

It introduces a new daughter-unit bound to ?word-mine and hangs it as a subunit
from a parent-unit bound to ?top-unit. There are no further pending units,
otherwise they would be made subunits of the daughter-unit. The J-operator
can associate additional information with the daughter-unit. In the example of
the mine-cxn construction, the J-operator adds information about the lexical
category, person, number, and case.

The TAG-operator The J-operator is made more versatile by introducing a
way to tag parts of a feature structure so that they can be moved elsewhere in
the transient structure. The tag-operator has two arguments: a variable, known
as the tag-variable, and a set of features and values that are bound to the tag-
variable. The normal matching process is still used to check whether the features
and values match. If a tag-variable re-occurs inside a unit governed by a J-
operator, then the structure is moved from its old position to its new position.

Here is an example. In production, the top-unit initially contains all the
meanings that need to be covered , and lexical constructions take those parts
that they can cover and encapsulate them in a new unit. This is done with the
tag operator, which binds the meaning of the word “mine" and then moves into
the ?word-mine unit created by the J-operator, as illustrated in the semantic
pole of the mine-cxn construction.

(tag ?meaning
(meaning
(== (context ?context)

(dialog-participant ?indiv speaker ?context))))

The meaning covered by the word is tagged and then moved from the top-unit
to the newly created unit that covers this meaning in production. The form
introduced by the word is also tagged and then moved from the top-unit to a
newly created unit in parsing.

Footprints One of the biggest issues in language processing is the management
of the search space. This arises unavoidably in parsing because most word forms
or syntactic constraints have multiple meanings and functions, and it is often not
possible to make a definite choice until more of the sentence has been processed.
It also arises in production because there is usually more than one way to express

32 L. Steels

a particular meaning, and it is not always possible to decide fully which choice is
the most appropriate until other aspects of the sentence are worked out. Many
techniques help to avoid search whenever possible, for example, choices can be
left open as variables until enough information is available to choose their bind-
ings, or the value of a particular syntactic feature (such as the lexical-category)
can be a list of potential values from which one is then actually chosen to be the
actual value.

Adding footprints to a transient structure is another technique for avoid-
ing search and particularly the harmful recursive application of constructions.
Footprints are represented as one of the features of a unit. They are left behind
by constructions, so that other constructions (or the same construction) can see
that this construction was involved in building a particular piece of structure and
hence can refrain from application. By convention, the name of the footprint left
behind by a construction is the name of the construction itself. A construction
may also leave behind other footprints. For example, if the construction is a
member of a family of constructions, each construction leaves behind a family
footprint so that more general constructions of the same family will no longer
trigger. Another example concerns the handling of defaults. Constructions that
deal with overt cases leave behind footprints so that default construction dealing
with an unmarked case does not need to trigger anymore (see examples in [3]).

In the example given earlier, the mine-cxn construction first checks whether
it has not yet already applied on the ?top-unit, so that recursive application is
avoided. Once it has applied, it leaves behind a footprint that it was involved in
building the new unit bound to ?word-mine so that there can be no recursive
application where the unit ?word-mine becomes bound to ?top-unit. Footprints
are not only useful for controlling the application of constructions. They are also
useful for a grammar designer who is inspecting transient structures in order to
figure out which construction did what.

5 Conclusions

This paper introduced some of the design principles that are currently used in
Fluid Construction Grammar. We distinguished three levels of analysis: a linguis-
tic level, a design level and an operational level. The linguistic level starts from
an analysis of which semantic domains and communicative functions are relevant
for the language fragment being studied. It then investigates first the functional
structure underlying sentences: which semantic functions are involved, how do
they map to syntactic functions, and how are syntactic functions expressed in
the language. Next it investigates the expression of grammatical meanings, such
as tense and aspect, using the grammar square as guidance.

The design level starts from an analysis of the major design patterns that are
used in the language fragment and then seeks to find out which templates could
be used to implement them. A template emphasises linguistic content, hiding
computational details as much as possible. Templates are translated automat-
ically to the operational level by a compilation process so that we obtain the

Design Methods for Fluid Construction Grammar 33

‘real’ constructions that drive parsing and production processes. Constructions
can be written by hand, but it is much more efficient to do so with templates,
as later chapters with case studies show.

FCG is an attempt to capture many ideas that have been floating around
in the construction grammar literature. But there are certainly still many ideas
which are not yet incorporated. For example, inheritance plays an important
role in many construction grammars but it is not a core component of FCG, and
the same phenomena are captured in other ways. FCG uses many of the same
techniques found in other unification-based grammars, but there are also pro-
found differences. For example, FCG constructions are split into two poles which
are used differently in parsing and production, whereas HPSG would put every-
thing together in a single structure. Deeper comparisons with other attempts for
formalizing construction grammar and the relation to other unification-based
grammars are discussed in later chapters of this book (see particularly [6]). FCG
is still a very new formalism and many issues remain to be explored. In some
cases, solutions developed in other unification-based grammars can be nicely
translated into FCG. In other cases, FCG suggests new venues that might be
translatable to other formalisms, but this needs to be examined.

Acknowledgements

FCG has been under development for a decade with teams at the University of
Brussels (VUB AI Lab) and the Sony Computer Science Laboratory in Paris. The
primary source of funding has come from the Sony Computer Science Laboratory
with additional funding provided by the EU-FP6 ECagents project and the EU-
FP7 ALEAR project.

Bibliography

[1] Alexander, C.: The Timeless Way of Building. Oxford University Press,
Oxford (1979)

[2] Bergen, B.K., Chang, N.: Embodied Construction Grammar. In: Östman,
J.O., Fried, M. (eds.) Construction Grammars: Cognitive Grounding and
Theoretical Extensions. John Benjamins, Amsterdam (2005)

[3] Beuls, K.: Construction sets and unmarked forms: A case study for Hun-
garian verbal agreement. In: Steels, L. (ed.) Design Patterns in Fluid Con-
struction Grammar. John Benjamins, Amsterdam (2011)

[4] Carpenter, B.: The Logic of Typed Feature Structures. Cambridge Univer-
sity Press, Cambridge UK (1992)

[5] Carroll, S., Grenier, J., Weatherbee, S.: From DNA to Diversity. Molecular
Genetics and the Evolution of Animal Design. Blackwell Science, Oxford
(2001)

[6] Ciortuz, L., Saveluc, V.: Fluid Construction Grammar and feature con-
straints logics. In: Steels, L. (ed.) Computational Issues in Fluid Construc-
tion Grammar. Springer Verlag, Berlin (2012)

34 L. Steels

[7] Copestake, A.: Implementing Typed Feature Structure Grammars. CSLI
Publications, Stanford (2002)

[8] Croft, W.: Radical Construction Grammar. Oxford University Press, Oxford
(2001)

[9] Dalrymple, M., Kaplan, R., Maxwell, J., Zaenen, A.: Formal issues in
Lexical-Functional Grammar. CSLI Publications, Stanford (1995)

[10] De Beule, J.: A formal deconstruction of Fluid Construction Grammar.
In: Steels, L. (ed.) Computational Issues in Fluid Construction Grammar.
Springer Verlag, Berlin (2012)

[11] De Beule, J., Steels, L.: Hierarchy in fluid construction grammar. In: Fur-
bach, U. (ed.) Proceedings of KI-2005. Lecture Notes in AI 3698. pp. 1–15.
Berlin (2005)

[12] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Pub. Co., Reading
Ma (1995)

[13] Gerasymova, K.: Expressing grammatical meaning with morphology: A case
study for Russian aspect. In: Steels, L. (ed.) Computational Issues in Fluid
Construction Grammar. Springer Verlag, Berlin (2012)

[14] Goldberg, A.E.: A Construction Grammar Approach to Argument Struc-
ture. Chicago UP, Chicago (1995)

[15] Goldberg, A.E.: Constructions: a new theoretical approach to language.
Trends in Cognitive Sciences 7(5), 219–224 (2003)

[16] Höfer, S.: Complex declension systems and morphology in Fluid Construc-
tion Grammar: A case study of Polish. In: Steels, L. (ed.) Computational
Issues in Fluid Construction Grammar. Springer Verlag, Berlin (2012)

[17] Kay, M.: Parsing in functional unification grammar. In: Grosz, B., Spark-
Jones, K., Webber, B. (eds.) Readings in Natural Language Processing.
Morgan Kaufmann, San Francisco (1986)

[18] Kay, P., Fillmore, C.: Grammatical constructions and linguistic generaliza-
tions: the what’s x doing y? Language 72, 1–33 (1996)

[19] Laenzlinger, C.: French adjective ordering: Perspectives on dp-internal
movement types. Lingua 115/5, 645–689 (2000)

[20] Langacker, R.W.: Foundations of Cognitive Grammar. Volume 1. Stanford
University Press, Stanford (1987)

[21] Langacker, R.W.: A dynamic usage-based model. In: Barlow, M., Kemmer,
S. (eds.) Usage-Based Models of Language, pp. 1–63. Chicago University
Press, Chicago (2002)

[22] Levinson, S.C.: Space in Language and Cognition. Language, Culture and
Cognition 5, Cambridge University Press, Cambridge (2003)

[23] Loetzsch, M.: Tools for grammar engineering. In: Steels, L. (ed.) Computa-
tional Issues in Fluid Construction Grammar. Springer Verlag, Berlin (2012)

[24] Micelli, V.: Field topology and information structure: A case study for Ger-
man constituent order. In: Steels, L. (ed.) Computational Issues in Fluid
Construction Grammar. Springer Verlag, Berlin (2012)

[25] Michaelis, L.: Sign-based construction grammar. In: Heine, B., Narrog,
H. (eds.) The Oxford Handbook of Linguistic Analysis. Oxford University
Press, Oxford (2009)

Design Methods for Fluid Construction Grammar 35

[26] Michaelis, L., Lambrecht, K.: Toward a construction-based theory of lan-
guage function: The case of nominal extraposition. Language 72, 215–247
(1996)

[27] Newmeyer, F. (ed.): Language Form and Language Function. MIT Press,
Cambridge Ma (1998)

[28] Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. Chicago
University Press, Chicago (1994)

[29] Sag, I., Wasow, T., Bender, E.: Syntactic Theory. A Formal Introduction.
CSLI Publications, Stanford (2003)

[30] Spranger, M., Pauw, S., Loetzsch, M., Steels, L.: Open-ended Procedural
Semantics. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots.
Springer, New York (2012)

[31] Spranger, M., Loetzsch, M.: Syntactic indeterminacy and semantic ambigu-
ity: A case study for German spatial phrases. In: Steels, L. (ed.) Design Pat-
terns in Fluid Construction Grammar. John Benjamins, Amsterdam (2011)

[32] Stadler, K.: Chunking constructions. In: Steels, L. (ed.) Computational Is-
sues in Fluid Construction Grammar. Springer Verlag, Berlin (2012)

[33] Steels, L.: Language as a complex adaptive system. In: Schoenauer, M. (ed.)
Proceedings of PPSN VI. pp. 17–26. Lecture Notes in Computer Science,
Springer-Verlag, Berlin (2000)

[34] Steels, L.: Constructivist development of grounded construction grammars.
In: Scott, D., Daelemans, W., Walker, M. (eds.) Proceedings of ACL. pp.
9–16. ACL, Barcelona (2004)

[35] Steels, L.: Grounding Language through Evolutionary Language Games. In:
Steels, L., Hild, M. (eds.) Language Grounding in Robots. Springer, New
York (2012)

[36] Steels, L., De Beule, J., Neubauer, N.: Linking in Fluid Construction Gram-
mars. In: Proceedings of BNAIC. pp. 11–18. Transactions of the Belgian
Royal Society of Arts and Sciences, Brussels (2005)

[37] Steels, L., De Beule, J., Neubauer, N.: Bnaic. In: Transactions of the Belgian
Royal Society for Science and Arts. p. October. Brussels (2005)

[38] Steels, L., Kaplan, F.: Spontaneous lexicon change. In: Proceedings of
COLING-ACL 1998. pp. 1243–1250. Morgan Kaufmann, San Francisco, CA
(August 1998)

[39] Steels, L.: The emergence of grammar in communicating autonomous
robotic agents. In: Horn, W. (ed.) ECAI 2000: Proceedings of the 14th
European Conference on Artificial Life. pp. 764–769. IOS Publishing, Am-
sterdam (August 2000)

[40] Steels, L.: A design pattern for phrasal constructions. In: Steels, L. (ed.)
Design Patterns in Fluid Construction Grammar. John Benjamins, Ams-
terdam (2011)

[41] Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

[42] Steels, L.: A first encounter with Fluid Construction Grammar. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

36 L. Steels

[43] Steels, L. (ed.): Experiments in Cultural Language Evolution. John Ben-
jamins, Amsterdam (2012)

[44] Steels, L., van Trijp, R.: How to make construction grammars fluid and
robust. In: Steels, L. (ed.) Design Patterns in Fluid Construction Grammar.
John Benjamins, Amsterdam (2011)

[45] Talmy, L.: Toward a Cognitive Semantics, Typology and Process in Concept
Structuring, vol. 2. MIT Press, Cambridge, Mass (2000)

[46] Tomasello, M.: Constructing a Language. A Usage Based Theory of Lan-
guage Acquisition. Harvard University Press (2003)

[47] van Trijp, R.: A design pattern for argument structure constructions. In:
Steels, L. (ed.) Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

[48] van Trijp, R.: Feature matrices and agreement: A case study for German
case. In: Steels, L. (ed.) Design Patterns in Fluid Construction Grammar.
John Benjamins, Amsterdam (2011)

[49] Wellens, P.: Organizing constructions in networks. In: Steels, L. (ed.) De-
sign Patterns in Fluid Construction Grammar. John Benjamins, Amsterdam
(2011)

[50] Winograd, T.: A procedural model of language understanding.
In: Computation & intelligence, pp. 203–234. American Associ-
ation for Artificial Intelligence, Menlo Park, CA, USA (1995),
http://dl.acm.org/citation.cfm?id=216000.216012

[51] Woods, W.: Problems in procedural semantics. In: Pylyshyn, Z., De-
mopolous, W. (eds.) Meaning And Cognitive Structure. Ablex Publishing,
New York (1986)

