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Organizing Constructions in Networks

Pieter Wellens

Abstract

Fluid Construction Grammar supports different ways to organize the in-
ventory of constructions into networks. This is not just usable for descriptive
purposes only. It plays an important role in streamlining the processes de-
ciding which construction to consider first. Networks become increasingly
more important as the complexity, multifunctionality, and size of a grammar
grows. This chapter shows how networks of constructions are represented in
FCG and how they are used to optimize language processing. Two exam-
ples are explored in more detail. The first example concerns family relations
of specificity between constructions and the second one concerns conditional
dependencies.

1. Introduction

Construction grammarians agree that constructions do not stand on their own
but have various relations to each other and that these relations form part of the
knowledge language users have of their language (Goldberg, 2003), (Croft & Cruse,
2004, chapter 10). One relation present in most approaches to construction grammar
is the taxonomic relation, which captures a relation of schematicity between two
constructions. Such taxonomic relationships form a network, rather than a simple
tree, in the sense that each construction can have multiple specializations and a more
specific construction can inherit from more than one schematic parent construction.

Besides taxonomic links Goldberg (1995) also proposes subpart, meronymy,
and polysemy relations, the latter relating two constructions that have identical syn-
tactic poles but differ in their semantics. Another type of relation is the metaphorical
or prototype-extension relation between a central sense and its extended uses. These
relationships have also been posited by Lakoff (1987, appendix 3), among others.
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The properties these relations capture are all of a descriptive, content-based na-
ture. For example, schematicity, meronymy and polysemy relationships are based
on relational properties that hold between the content of the constructions involved
in the relation. Nevertheless, cognitive linguists have argued that these relations
emerge and are acquired from language use and they thus view them as usage-
based (Tomasello, 2003). For example, schematicity is hypothesized to follow from
a process of schematization (Langacker, 2000), and the prototype-extension relation
follows from the act of extending the use of a construction.

Fluid Construction Grammar supports the organization of constructions in terms
of construction sets. All constructions that cover a particular aspect of grammar, for
example the lexicon, can be grouped together. FCG allows easy access to the con-
structions within a set and provides primitive operations to find, add and delete
constructions. Sets can already be used to influence the search process because
all constructions within a set are considered before the next set would be. Bleys
et al. (2011) illustrated that templates can exploit schematicity relations because
one construction can be built by taking an existing construction and adding more
constraints to it. For example, the French nominal phrase construction can be de-
fined in a schematic way, without yet determining the ordering of the adjective and
the noun, and then there can be two more specific variants, one for adjectives in
pre-nominal and another one for adjectives in post-nominal position.

This chapter extends the power of FCG by making it possible, not only to de-
fine networks of constructions based on relations between individual constructions,
but to use this information as well in processing. In the construction network each
node corresponds to a single construction and the edges linking the nodes are di-
rected, i.e. they have a start and an end node, and they can have a label indicating
which relation is intended, for example INHERITS-FROM, INSTANTIATES or EX-
TENDS. It is therefore possible to have multiple relations defined over the same set
of constructions. Moreover, the relations between constructions are not only used
for descriptive purposes but play an integral part in linguistic processing itself. For
example, schematicity relations can be used to influence the order of application of
the constructions within a set.

FCG is not only able to represent construction networks but also provides extra
primitive operations for dealing with construction networks, most of which manage
the edges that link the constructions. The FCG-interpreter maintains consistency in
the network, a necessary operation since these structures can become quite intricate
and are dynamic because constructions are being added and deleted by learning
processes. For example, when a construction is deleted, the network automatically
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removes all edges that link to or from that construction, in order to avoid loose
edges. There are also operators for accessing all associated nodes from a given
node (i.e. its neighbors in the network) and ways to view a construction network,
creating the kind of graphical representations that will be seen later in this chapter.

To make the discussion concrete, this chapter considers two examples of con-
struction networks and how they influence processing. The first example, discussed
in Section 2, concerns the representation and handling of families of constructions.
It will be shown that this poses challenges for language processing because the more
general construction(s) can normally trigger in the same circumstances as the more
specific ones, although they will only incompletely cover the sentence. In such cases
we want the most specific constructions to have priority. This chapter shows how
the organization of constructions in networks reflecting these family relationships
solves this problem.

The second example, discussed in Section 3, looks at conditional dependencies
between constructions. Such dependencies exist if one construction provides con-
stituents or information that another construction needs. For example, a nominal
phrase requires the presence of a nominal and it therefore does not make sense to
look for the application of nominal phrase constructions if such a nominal could
not be found. It turns out that these conditional dependencies can be automati-
cally inferred from language use and then be employed to prioritize the order in
which constructions are considered, effectively achieving the equivalent of priming.
Experiments reported here show that this can lead to dramatic efficiency improve-
ments.

2. Families of Constructions

Many constructions are closely related, and, what is thought of as one construc-
tion is in fact often a whole group of interrelated constructions. For example, Gold-
berg and Jackendoff have shown that the English resultative (as in ”she watered the
plants flat”) is best viewed as a family of constructions (Goldberg & Jackendoff,
2004). There is not a single unified resultative but rather a central resultative con-
struction which is further elaborated with subconstructions, sharing certain proper-
ties but differing in others. The notion of a ’family’ echoes the work of Rosch &
Mervis (1975) and Wittgenstein (1967) on the family structure of concepts.

FCG supports not only the representation of information about family structure
but also the exploitation of such structures in language processing. This section
begins by introducing a simplified example grammar fragment that focuses on the
family of English transitive constructions (Section 2.1). The grammar fragment
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serves as an illustration of how to represent family relations between constructions
but should not be taken as the final word on how to model argument structure in En-
glish. Using this grammar fragment, this section then illustrates that having related
constructions, but failing to explicitly encode their relations in a network struc-
ture, is problematic from a processing point of view (Section 2.2). The problem
stems precisely from the many commonalities that the constructions share. This is
followed by a procedure for defining family relations in FCG , including an expla-
nation as to how such a network can aid linguistic processing (Section 2.3).

2.1. An Operational Example: Family of Transitive Constructions

Argument structure constructions have received quite a bit of attention from con-
struction grammarians, because the marking of participants in an event is one of the
most important aspects of language (See also the chapter by van Trijp (2011) later
in this book). Argument structure constructions show great diversity both across
different languages and within one language. One subset of argument structure
constructions are the transitive constructions, which express a transitive action and
include at least one direct object, as for example “He loved his car”. In English,
events are semantically subcategorized, in terms of cause-motion events, cause-
receiver events, cause-become events, etc., and these give rise to a family of transi-
tive constructions with the general transitive construction at its center.

In order to construct an interesting grammar fragment, we have used inspira-
tion about possible transitive constructions and semantic categorizations from the
FrameNet project (Fillmore, 1982; Baker et al., 1998) . FrameNet annotates lexical
units (words and their different senses) with frames. These frames are stored as
an inheritance network. For example, the verb throw evokes the CAUSE MOTION

frame, which itself inherits from the more general frame TRANSITIVE ACTION.
In turn, TRANSITIVE ACTION is the child of the two very general frames EVENT

and OBJECTIVE INFLUENCE. Lexical constructions can be automatically gener-
ated from this information, including its frames for every lexical entry. The frame
hierarchy is represented as a list of semantic categorizations. Here is an example
for the lexical constructions THROW(here defined in terms of templates). Syntactic
categorizations include the part of speech (POS) verb (v).
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(def-lex-cxn throw-cxn

(def-lex-skeleton throw-cxn

:meaning (== (throw ?causer))

:string "throws")

(def-lex-cat throw-cxn

:sem-cat (== cause_motion transitive_action

objective_influence event)

:syn-cat (==1 (pos v))))

Grammatical constructions cannot be extracted automatically from FrameNet
and thus still need to be coded by hand. The core construction of the family, namely
the general transitive construction, reveals few surprises. It is a more specific case of
the phrase structure constructions studied earlier in (Steels, 2011a). The construc-
tion requires three constituents, two referents (the actor and the undergoer) and an
event categorized as TRANSITIVE ACTION, which means that the construction can
categorize any transitive action but does not do much more than link the participants
as generic actor and undergoer to the event in a further unspecified manner.

The other subconstructions that are part of the family mirror the FrameNet frame
hierarchy at the constructional level, which means that a variant of the transitive
construction is created for each subframe of the core TRANSITIVE ACTION frame
according to the following process:

• The event constituent requires that the verb satisfies a set of semantic catego-
rizations from the frame hierarchy. For example, the CREATING construction
requires the frames CREATING, TRANSITIVE EVENT, EVENT and OBJEC-
TIVE INFLUENCE.

• The two participant roles are linked with the roles appropriate to the frame.
For example CREATING fuses Creator and Created Entity for the actor
and the undergoer respectively.

• In some cases additional meanings or frames are necessary. For example, the
CAUSE MOTION construction includes a path.

The TRANSITIVE ACTION frame has over thirty subframes, resulting in equally
many constructions. Examples are DESTROYING, CREATING, CAUSE IMPACT,
INTERRUPT PROCESS and, of course, CAUSE MOTION.
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The grammar contains additional grammatical constructions beyond the fam-
ily of transitives. In total there are an extra seventeen grammatical constructions,
including the intransitive construction and some variants of it. These other construc-
tions are not required for understanding the ideas in this section and are not further
elaborated upon but are nevertheless needed to process the example utterances in the
following sections. Further details about the conversion of Frame Semantic mean-
ings to full FCG constructions is documented in (Micelli et al., 2009; De Beule &
Micelli, To appear).

2.2. Why Related Constructions Are Problematic for Processing

Given such a grammar fragment, the problems encountered in linguistic pro-
cessing can now be demonstrated. There are two problems.

The first one appears because one construction partly overlaps with another one.
Following (Goldberg, 1995), we call this the SUBPART-relation. For example, the
transitive construction overlaps with the intransitive construction, because the in-
transitive is entirely the same as the transitive in terms of form, except that it does
not have a direct object. Consequently the intransitive is labeled as a subpart of
the transitive. The utterance “the student writes” is intransitive whereas “the stu-
dent writes a construction” is transitive. However in processing a split occurs after
“writes”. Either the intransitive construction should apply, or other material may
still be coming possibly triggering the transitive construction. It would therefore
be preferable if the processor first explores whether a transitive is possible instead
of jumping already to the conclusion that the intransitive applies. Knowing that a
subpart relation applies helps the processor to decide which of these constructions
to consider first.

The second problem appears because one construction may be a more specific
case of another construction but shares entirely the same form constraints. This
relation is generally said to be one of polysemy between constructions. For exam-
ple, “the student writes a construction” is an instance of the transitive construction,
but it is also an instance of the more specific CREATING CXN, which adds addi-
tional meaning and frame semantics to the transient structure. It would therefore be
preferable that the processor first explores the relevant more specific constructions
before the more general ones, and it can do this by exploiting the polysemy relation.

Both problems are illustrated in Figure 1, which depicts an (inelegant) search
tree for parsing the utterance “The student writes a construction”, taken from an
operational implementation. Only two out of seven final leaf nodes are successful,
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((write ?text-16) (created_entity ?text-16 ?ling-18) (creater ?text-16 ?educ-11) (student ?educ-11) (locate-in-discourse ?educ-11 any any) (construction ?ling-18) (locate-in-discourse ?ling-18 single-entity any))

Figure 1. Search tree for parsing the phrase “The student writes a construction”
without any encoding or exploitation of network structure between related construc-
tions. To reduce the size of the Figure, only a fragment of the family of transitive
constructions is shown. Only the final constructions with a bold border, CREAT-
ING CXN and TRANSITIVE CXN, led to a successful parse.

being CREATING CXN and TRANSITIVE CXN. The other final constructions only
partially apply in that their conditional pole, here their form pole, matched, but their
semantics later turned out to be incompatible in merging. When traversing the tree
left to right, the first four nodes show the application of four lexical constructions,
followed by a first split in the tree. This split occurs because two constructions,
INTRANSITIVE and A (triggered by the presence of the word ”a”), both match with
the transient structure. The INTRANSITIVE matches because its form overlaps with
the form of transitive constructions as it only requires two constituents, one for
the event and one for the actor. The final split in the search tree would normally
show all the variants of the transitive construction that match, but here it has been
reduced to show only five, plus the intransitive again. Problematically, most of the
constructions in the family of transitives are polysemous and thus match on the same
form. Only later, during merging, is FCG capable of finding that TRANSITIVE CXN

and CREATING CXN are fully compatible and can be merged. A third and final
problem is that the CREATING CXN is not preferred over TRANSITIVE CXN, while
it does lead to a more precise interpretation.
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2.3. Solving Processing Problems by Defining a Network

The previous section demonstrated that related constructions lead to disordered
linguistic processing, which is especially unsatisfactory because the opposite is ex-
pected, namely that the constructions would be processed more efficiently. This
section shows that this outcome is indeed possible but only when explicitly coding
the relations in a network and allowing these relations to influence processing. We
start by showing how a grammar designer can define relations between construc-
tions in FCG , which is applied here to the example family of transitives.

Fluid Construction Grammar provides a primitive template
link-constructions that specifies a link between two constructions with a
directed, labeled edge as follows:

(link-constructions :start creating_cxn

:end transitive_cxn

:label polysemy)

The slots :start and :end are filled with the names of the two constructions that are
linked in a network and the :label indicates the kind of relation between them.

Follwing the types of connections proposed by Goldberg (1995), we can use
these network operations to manually define the relationships between the construc-
tions of the example grammar fragment. The intransitive construction is first linked
to the transitive construction with a SUBPART relation:

(link-constructions :start intransitive

:end transitive_cxn

:label form_subpart)

Next, all of the subconstructions of the family of transitives are linked to the gen-
eral transitive construction with a POLYSEMY link, which in this case also denotes
INHERITANCE. An example of this operation is already given above for CREAT-
ING CXN and TRANSITIVE CXN. Using these operations results in a network of
which a fragment is shown in Figure 2. FCG includes software to render these
networks automatically.

How can the network shown in Figure 2 be put to use during processing so
as to avoid the problems illustrated in Section 2.2? We need to look at both the
competition between constructions based on the SUBPART relation, as between the
intransitive and the transitives and, the competition among the polysemous transi-
tives.
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Figure 2. A fragment of a construction network in FCG . Shown here are two dif-
ferent types of edges, the FORM SUBPART edge for intransitive and transitive, the
POLYSEMY edge for most of the constructions in the transitive family.

Competition between constructions can be minimized by prioritizing the appli-
cation of constructions based on their relationships:

1. The FORM SUBPART relation prioritizes the more elaborate construction.
Thus the transitive construction would gain priority over the intransitive one
because the intransitive construction forms a subpart of the transitive one.

2. The POLYSEMY relation prioritizes the more specific constructions. For ex-
ample CREATING CXN has priority over TRANSITIVE CXN.

3. For non-ambiguous utterances the subconstructions of the same construction
are all mutually exclusive in application. Their processing can be halted as
soon one applies successfully. For example, when CREATING CXN has suc-
cessfully applied on a certain part of the utterance, it is not necessary to still
try for example DESTROYING CXN on that same part.



Organizing Constructions in Networks 11

((write ?text-42) (created_entity ?text-42 ?ling-27) (creater ?text-42 ?educ-43) (student ?educ-43) (locate-in-discourse ?educ-43 any any) (construction ?ling-27) (locate-in-discourse ?ling-27 single-entity any))

Figure 3. Search tree for parsing the phrase “The student writes a construction”
with the use of the network structure shown in Figure 2.

Using the network shown in Figure 2 and the principles described above, FCG
is able to reduce the search tree from Figure 1 to the one shown in Figure 3. The
first principle has inhibited the transitive from applying in the final branch because
CREATING CXN has priority over it. The same holds for the intransitive, which
also no longer clutters the final branch. There are also less competing transitive
subconstructions, because the successful application of the creating construction
signals they no longer need to be considered. The first branch that is still there is
unavoidable, given the design of the grammar and the current network. At that point
in the application process, the intransitive construction matches with the transient
structure, since it has processed the constructions WRITE.V, STUDENT.N and THE

and, as such, contains the necessary constituents (event and actor).

3. Streamline Linguistic Processing through Dependency Networks

The previous section showed how to define a network structure for families
of constructions and how this network can significantly aid linguistic processing
by prioritizing the constructions. This section looks at another example which is
based on detecting and exploiting conditional dependencies. Such a dependency
exists between two constructions X and Y if X generates some of the preconditions
for the triggering of Y. For example, the CAUSE MOTION CXN from the previous
section requires a total of four constituents, two referents, a predicate and the event,
categorized as evoking the CAUSE MOTION frame. These constituents and their cat-
egories need to have been supplied by constructions that applied earlier in the chain
of constructions. From a processing point of view, this information can therefore be
exploited in two ways: it is not necessary, firstly, even to try CAUSE MOTION CXN

before the constituents have been supplied and, secondly, it is possible to prioritize
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or prime a construction as soon as the constructions that establish its constituents
have been active.

Interestingly, the conditional dependencies between constructions can be
learned automatically by the FCG-interpreter as a side effect of the normal pro-
cess of parsing and production, as experiments in this section will show. It suffices
to keep track of which constructions co-apply and translate that into dependency
relations.

The remainder of this section has four parts. The first subsection shows how
networks based on conditional dependencies can drastically reduce search (Subsec-
tion 3.1). Next we look at how these dependencies can be learned or inferred from
processing (Subsection 3.2), and finally how they can subsequently aid minimizing
search by priming the most likely constructions (Subsection 3.3). A final subsection
reports experimental results in testing these mechanisms (Subsection 3.3.2).

3.1. Bottlenecks in Constructional Processing

As explained in earlier chapters (Steels, 2011b), (Bleys et al., 2011), construc-
tions apply on the transient structure in a two-phase process. The first phase, called
the matching phase, does not add any information to the transient structure. Only
when the conditional pole matches, which most often is not the case, does the sec-
ond phase of application begin. In this phase the transient structure is altered by
merging the J-units of the conditional pole of the construction with the transient
structure (first merge) and then merging the complete contributing pole (second
merge). A construction only applies completely if both phases (matching and merg-
ing) are successful. Because the application of a construction is only determined by
its success in matching and merging with the transient structure, it follows that the
order of application of constructions does not straightforwardly map to the surface
order (i.e. the words in the sentence).

A striking feature of constructional processing (be it production or parsing) is
that, in the end, only a fraction of all constructions is used in producing or parsing
a sentence. Indeed, the whole point of the search process is to find this very small
subset as an ordered sequence. However, to guarantee completeness and find this
small subset, the default search process needs to iterate over all constructions in
every expansion of a search node until it finds an applicable construction. Without
optimizations, the search process needs to match, on average, half of the construc-
tions in every expansion.
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This last point can be illuminated through the example of parsing the phrase
“next to the house”. The same grammar is used as introduced in Section 2 and ex-
plained in detail in (Micelli et al., 2009; De Beule & Micelli, To appear). The gram-
mar counts a total of 116 constructions, of which 94 are lexical including nouns,
adjectives, prepositions and verbs, with the remaining 22 being grammatical. The
four constructions involved in processing the phrase are introduced in detail in the
next section, but, for the present purpose, only the search tree as shown in Figure 4
is of importance. Every node depicts a successfully matched and merged construc-
tion, but what is not shown are all the constructions that had been tried to match and
that failed. The amount of failed constructions (the number in brackets) is shown
for every node in the tree. With a simple calculation, it follows that in total over 350
constructions have matched, with an average of 87 constructions being matched in
each node in the tree. The latter number is indeed the number expected for a total
of 116 constructions.top

top

Producing �
((house h) (locate-in-discourse h any any) (next_to n) (ground n h))

Applying � construction �network �collection �(226) �in �direction �

Found �a �solution

initial structure
top

application process

queue

applied constructions

resulting structure
top

Utterance: �"next �to �the �house"
reset

sem syn

initial house.n (70) next_to.prep (90) the (91) spatial_phrase �(98)

the (91) next_to.prep (90)

spatial_phrase ((modifier-head)) the ((det)) next_to.prep ((lu) (t)) house.n ((lu) (t))

next_to.prep-105house.n-104
sem syn

next_to.prep-105 house.n-104

Figure 4. Search tree for parsing the phrase “next to the house” involving four con-
structions.The bracketed numbers in each node depict the amount of constructions
that tried to match before finding the applicable one. Dependencies help to reduce
this number.

The default search process, which uses just plain sets of constructions, has no
means of prioritizing certain constructions as being more likely to apply than others.
One straightforward improvement is to order the constructions on token frequency
but, on its own, this is still limited. This modification still treats the constructions
as independent entities with no relation to one another. When looking again at the
search tree in Figure 4 we see that THE and SPATIAL PHRASE apply last, which, of
course, is no accident since these constructions require the categories supplied by
the earlier constructions. Just as THE requires a noun, so does SPATIAL PHRASE

have a conditional dependency on the preposition next to and on a referring ex-
pression, which, in this case, is realized by the combination of THE and a noun.
Recording these dependencies in a network creates the network depicted in Figure
5.

As will be shown in the next subsection, such a network structure can drastically
optimize linguistic processing and actually transforms the search from a standard
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Figure 5. Network capturing the dependencies between the constructions when
parsing the phrase “next to the house”. The semantics of the edges could be read as
meaning ’supplies a dependency for’. For example HOUSE supplies a dependency
for the phrasal construction THE.

heuristic process to a much more plausible process of activation triggered by the
constructions and mediated by the categories and frames.

3.2. Learning Constructional Dependency Networks

Before demonstrating that conditional dependencies indeed drastically improve
processing, let us investigate how these dependencies can be induced from language
use by inspecting the interplay between the constructions. A dependency is found
when one construction merges information in the transient structure that is later
required during matching by another construction, as illustrated in Figure 6.

The first construction shown in Figure 6 is the lexical construction for HOUSE.
The construction is quite basic and links the predicate (house ?buil) to a lexeme
“house”. Of interest here is what this construction merges in the transient structure.
Focusing on the syntactic pole (the right pole), we can see in the added box that the
construction merges (lu (pos n)), which is extracted from FrameNet and denotes
that it is a lexical unit and that its part of speech is noun. Following the line to the
connected box, we end up in a constituent unit of the construction for THE. During
parsing this construction matches only when there is a unit containing (pos n),
which in the current example is supplied by HOUSE. It can thus be concluded that
in parsing the phrase “next to the house”, THE depends on HOUSE, because HOUSE

supplies (merges) the syntactic category (pos n) which is required (matched) by
THE.
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Figure 6. The four constructions required for producing and parsing the utter-
ance“next to the house”. For readibility only the syntactic and semantic categories
(syn-cat-sem-cat) are shown. In each construction the categories below the dot-
ted line are introduced (merged) by the construction,the categories above the dotted
line are required (matched). The dependencies are visualised by connected boxes.
For example NEXT TO introduces syn-cat (lu (pos prep)) which is required
by one of the two constituents in SPATIAL PHRASE. As such for this utterance SPA-
TIAL PHRASE thus partially depends on NEXT TO.
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The exact same reasoning holds for the other dependencies. Again, in Figure
6, we see that the bottom construction SPATIAL PHRASE has two dependencies
in parsing (the boxes in the right pole). One is a preposition (pos prep), here
supplied by NEXT TO, the other a referring expression provided by THE.

The conditional dependencies differ for parsing and producing, and, conse-
quently, two separate dependency networks are needed, even though the construc-
tions they link are the exact same. Having two different networks produces an in-
teresting twist in the reversibility of FCG processing. The constructions themselves
are fully reversible, but this does not imply that the order in which they are applied,
or their conditional dependencies, have to be the same.

(a) Parsing Network (b) Production Network

Figure 7. The constructional dependency networks that can be inferred after pars-
ing (left) and producing (right) the phrase “next to the house”. Diamond shaped
nodes (HOUSE.N and NEXT TO.PREP) represent constructions that have been
found to be independent. Egg shaped nodes (THE and SPATIAL PHRASE) are con-
structions that are dependent on the incoming categories (rectangular nodes).

FCG thus infers two networks for the example phrase “next to the house”. Both
networks are shown in Figure 7, with the network captured from parsing at the
left. The different syntactic or semantic categories that establish the conditional
dependency links are also shown.

FCG updates the correct dependency network after every usage event. When
new constructions are used, they are added to the network. Either they are depen-
dent on specific categories, in which case they are linked appropriately, or they are
applied independently of any other constructions, in which case the network also
records them as such. Existing constructions might also be used in novel ways,
which then results in extending their links with other constructions in the network.
Even when the network does not require any extension, it is still altered by every
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use, since the links that have been encountered become more entrenched. Figure 8
shows a fragment of the network after processing a series of sentences.

Figure 8. Fragment of the constructional dependency network for production
learned from a series of usage events. Just as before, square nodes contain (se-
mantic) categories. The other nodes represent dependent and independent con-
structions.

By delving into the intricate interplay between matching and merging, we have
shown through this example how FCG can track dependencies between construc-
tions. In the following section, we explain how dependency networks are exploited
by FCG to optimize processing.

3.3. How Dependency Networks Streamline Linguistic Processing

3.3.1. Network-Driven Linguistic Processing Explained
Dependency networks can be used in processing by priming or prioritizing con-

structions whose dependencies (incoming categories) have been realized in the tran-
sient structure. For example, even the small network shown in Figure 7 (a) indicates
that it is wothwhile in parsing to try the SPATIAL PHRASE construction when a
preposition and a referring expression have been merged in the transient structure.
Constructions can thus be seen as ’communicating’ with each other during process-
ing through the categories that they require (from previous constructions) and that
they supply (to later constructions). Categories thus become the main regulators of
linguistic processing.

Constructions for which all dependencies in the network have been met get
primed, which means that they get prioritized over all other non primed construc-
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tions. When a construction applies, its outgoing edges fire and activate the con-
nected categories. For the network in Figure 7 (a) for example, after the HOUSE

construction applies, the connected (POS N) category gets activated. The active
categories then determine the priming of the following constructions by prioritizing
all constructions for which all incoming categories are active. Returning to the ex-
ample, because the (POS N) category is active, the THE construction can now be
primed, since (POS N) is its only incoming category.

As the network grows, multiple constructions can be primed at the same time.
Even these primed constructions are internally ordered, since, in the network, every
edge is scored, denoting the amount of times that that edge has led to a successful
prime. The non-primed constructions also have an internal ordering: firstly, all of
the known independent constructions, and then all the remaining constructions, both
of which are ordered on their token frequency. These ordering principles result in
a highly accurate priming of constructions. Over time, the network only becomes
more and more accurate.

As such, the linguistic processing is based more on activation patterns in the net-
work, where constructions fire their outgoing edges, subsequently activating their
outgoing categories, which in turn prime new constructions. The applications of the
constructions themselves are what drive the application of the subsequent construc-
tions through the categories that they supply. The default FCG search (Bleys et al.,
2011) requires that in every expansion, each construction is checked as to whether
or not it can match with the transient structure. With the aid of the conditional de-
pendency network, the search can be changed quite radically from a best-first search
to a search process regulated by the network itself.

3.3.2. The Impact of Dependency Networks on Processing
Although the application process discussed in Section 3.1 looked streamlined, it

became evident that, behind the scenes, FCG needed to match many constructions
to find the correct one (Figure 4). When this example is expanded to include the
slightly more complicated phrase “the girl stands next to the house”, seven construc-
tions are required. Akin to Figure 4, Figure 9(a) shows the search tree for producing
the new example utterance. This application process is done without the aid of a de-
pendency network. What is interesting is, again, not the tree itself but the numbers
inside the individual nodes. These indicate the amount of constructions tried for
application (and that failed) before the shown construction was applied. For ex-
ample, before the first applied construction (here, the lexical construction GIRL.N),
21 other constructions had been unsuccessfully tried for matching. This number is
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Figure 9. Shown here at the top is the search tree for producing the utterance “the
girl stands next to the house” and in the middle the network that can be inferred
from it. Most instructive here are the numbers in the nodes of the search trees,
right after the construction name, since they denote the number of constructions
that failed to match before the final, successful match. At the bottom we again see
the search tree but this time, when using the inferred dependency network. Search
tree (a) has an average of 46 failed construction applications per node, while (c)
only has an average of 1.
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even quite small since the average for this tree is 46. This number should, of course,
be as small as possible.

The network shown in the middle of Figure 9 is automatically learned by FCG
after processing the utterance. The egg-shaped, and diamond-shaped nodes repre-
sent the seven constructions and the square nodes, the mediating categories. This
network is quite illuminating even without knowing or understanding the inner
workings of the constructions, as it shows, for example, that the BEING LOCATED

construction (at the bottom of the network), which is a sort of extended intransitive
construction, has three distinct dependencies. By tracing upwards in the network,
the network shows which constructions supply these dependencies.

Using this network during processing results in the reduced search tree shown
in Figure 9(c). Some of the nodes have a bold border, indeed, only the grammatical
ones, which indicates that the construction was primed by the network, while also
explaining why the number of failed constructions is so low for these constructions.
The other constructions, namely, the lexical constructions, also have reduced the
number of failed attempts because of the ordering on token frequency. For this
example utterance, the network achieves a reduction from an average of 46 matched
constructions per node to slightly more than one.

The question that remains is whether or not this network approach can also scale
when processing hundreds of sentences covering all 116 constructions of the bench-
mark set derived from FrameNet. For this experiment, we produced and parsed
five hundred valid sentences, updating the network after every sentence. Figure
10 shows, for every grammatical construction, the evolution of the number of con-
structions that failed to match before the successful grammatical construction was
applied. Obviously, the standard search does not improve over time and maintains
an average that is around half of the total number of constructions. In contrast, after
three hundred completed production or parsing processes, the dependency network
was fully learned and the number of failed constructions was reduced to only two.
This result means that on average, for grammatical constructions, the second con-
struction that is tried is part of the successful branch.

4. Conclusion

We have looked at two examples of how network structure can organize the in-
ventory of constructions. The first example centered around the notion of a family
of constructions. It is beneficial to explicitly encode the different types of relation-
ships between related constructions, to avoid that more general constructions in-
terfere with the consideration of more specific constructions. The second example
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Figure 10. Evolution of the average number of grammatical constructions matched
per construction applied while processing a new sentence. The top curve represents
the baseline case corresponding to the default search, amounting, on average, to
about half of all constructions being matched each time. The bottom curve shows
the improvement of using dependency based priming, amounting to a substantial
drop from around forty to around two constructions. Note that this number is also
more stable.

concentrated on explicitly representing conditional dependencies between construc-
tions in a network. It was shown that the exploitation of this structure has a dramatic
effect on the efficiency of the search process in FCG.

There is a growing body of evidence supporting the hypothesis that acquiring
a language involves the learning of usage-based dependency patterns among con-
structions Tomasello, 1992; Saffran et al., 2008. There is also evidence that ac-
quired patterns of constructional usages influence language processing, for exam-
ple through the priming of frequently co-occurring constructions Tomasello et al.,
1997; Saffran, 2001. This chapter has shown that both observations have been suc-
cessfully operationalized in Fluid Construction Grammar. This process involves the
learning of constructional dependency networks from randomly generated but valid
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sentences according to an FCG grammar documented in Micelli et al., 2009. As
demonstrated, such networks can be learned and can reduce the amount of process-
ing required for parsing or producing a sentence. Additionally, I have proposed
to explicitly include semantic and syntactic categories in the network, which pro-
vides the glue between constructions, and I have shown how this leads to a powerful
capacity to generalize from observations and to an associated further reduction of
processing load. In Wellens & Beule (2010) we have investigated the impact of not
explicitly representing categories in the network but instead linking the construc-
tions direclty. There it was shown that representing the categories was beneficial
both in terms of accurracy of priming and stability of the network. Besides aiding
in processing Steels et al. (2007) have shown that a network structure can help in
the formation of a systematic grammar.

The dependency networks naturally give rise to an interplay of lexical and gram-
matical processing. As soon as dependencies are met grammatical constructions are
primed and can apply giving rise to more incremental processing where lexical and
grammatical constructions work together in a non-sequential manner.

The processing efficiency and accuracy in humans is nothing short of amazing,
and the mechanisms regulating our capacity for language have clearly been under
strong evolutionary pressure. If not, language processing would have become too
slow or the inventory of constructions could not expand to more than a limited lex-
icon. The dependency network and the results presented in Section 3 show that
language does indeed contain structure that allows one to build and shape a con-
structional dependency network, which can be used to optimize both efficiency and
accuracy. Moreover, there is a nontrivial connection between the dependencies we
tracked in our networks and the hierarchical structure of language, thus hinting that
the recruitment of these general cognitive capabilities might be a necessary require-
ment to learn and process hierarchical large scale language systems (Steels, 2007).
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