
Notice

This paper is the author’s draft and has now been published officially as:

Chang Nancy, De Beule Joachim, Micelli Vanessa (2012). Computational Con-
struction Grammar: Comparing ECG and FCG. In Luc Steels (Ed.), Computa-
tional Issues in Fluid Construction Grammar, 259–288. Berlin: Springer.

BibTeX:

@incollection{chang2012computational,
Author = {Chang, Nancy and De Beule, Joachim and Micelli, Vanessa},
Title = {Computational Construction Grammar: Comparing ECG and FCG},
Pages = {259--288},
Editor = {Steels, Luc},
Booktitle = {Computational Issues in {Fluid Construction Grammar}},
Publisher = {Springer},
Series = {Lecture Notes in Computer Science},
Volume = {7249},
Address = {Berlin},
Year = {2012}}

Computational Construction Grammar:
Comparing ECG and FCG

Nancy Chang1, Joachim De Beule2 and Vanessa Micelli1

1 Sony Computer Science Laboratory Paris, France
2 Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Belgium

Abstract. This chapter compares two computational frameworks devel-
oped over the last decade to support investigations into the emergence
and use of language, Fluid Construction Grammar (FCG) and Embod-
ied Construction Grammar (ECG). Both of these representational for-
malisms are rooted in the construction grammar tradition, sharing basic
assumptions about the nature of linguistic units and the crucial role
played by contextual factors. Nonetheless, they have arisen from differ-
ent perspectives and with different goals: FCG was designed to support
computational language game experiments that address the evolution
of communication in populations of robotic agents, while ECG was de-
signed to support cognitive modeling of human language acquisition and
use. We investigate how these differing emphases motivated different de-
sign choices in the two formalisms and illustrate the linguistic and com-
putational consequences of these choices through a concrete case study.
Results of this comparison sharpen issues relevant to computational con-
struction grammar in general and may hold lessons for broader compu-
tational investigations into linguistic phenomena.

1 Introduction

This chapter compares two computational formalisms developed over the last
decade: Fluid Construction Grammar (FCG) and Embodied Construction Gram-
mar (ECG). Both formalisms draw broad inspiration from construction grammar
and cognitive linguistics, sharing basic assumptions about the nature of linguis-
tic units and the crucial role played by meaning in context. But unlike most
other work in this area, both FCG and ECG aspire to provide computational
implementations of all proposed linguistic structures and processes. This formal-
ization (or operationalization) requirement reflects an emphasis not just on how
linguistic knowledge is represented but also on how it is used : conceptual and
linguistic structures should be seamlessly integrated with processes of language
learning and use.

Each formalism is also the centerpiece of a broader scientific framework tack-
ling similar issues, albeit from different perspectives and with different motiva-
tions. These may best be captured by examining the core goals and questions
driving these respective investigations:

Computational Construction Grammar 3

– FCG supports language game experiments that explore answers to the ques-
tion: How can communication emerge in populations of embodied agents? Its
roots are in artificial intelligence, and historically it has been oriented toward
artificial languages evolved and acquired by robotic agents. More recently,
however, it has begun to address phenomena inspired by natural languages,
as exemplified by the case studies in this and other volumes.

– ECG supports cognitive modeling of human language learning and use,
within a framework that asks: What is the neural, embodied basis of thought
and language? Its roots are in cognitive science and cognitive linguistics,
though it is also motivated by psychological, biological and especially devel-
opmental considerations.

While these endeavors are theoretically compatible, they have differing orienta-
tions and emphases that have shaped their respective formalizations. Some of
the resulting differences may be described as superficial notational variations,
but others reflect more substantial divergences.

The two formalisms are thus ideal candidates for comparison. In this chapter,
we aim to identify the core differences between FCG and ECG, as well as the
open research issues suggested by these differences. We center the discussion
around a concrete comparison of how the two formalisms realize the key ideas of
construction grammar, using a case study that allows a detailed comparison of
several lexical and phrasal constructions (Sections 3-5), as well as the processing
models (Section 6) associated with each formalism. Section 7 considers how the
results of our comparison sharpen issues relevant to computational construction
grammar in general, and what lessons they may hold for broader computational
investigations into linguistic phenomena.

Shared theoretical and methodological commitments Before turning to
our case study, we briefly summarize some basic theoretical commitments shared
by the two research frameworks under consideration. Broadly speaking, both
are identified with constructional, cognitive and usage-based approaches to lan-
guage. Constructions (mappings between form and meaning), are taken to be
the basic units of language [7?], and meanings correspond to particular ways of
conceptualizing or construing a situation [8?]. Language is also assumed to be
inherently embodied, grounded and communicative: language users have senso-
rimotor capacities that shape their conceptual categories, and they are grounded
in particular environments with specific communicative goals.

Most relevantly, both formalisms were designed to support working systems
that actually instantiate structures and processes that are elsewhere typically de-
scribed only discursively. This commitment to supporting language use means
that it is not sufficient merely to represent linguistic knowledge in formal no-
tation; rather, the processes that interact with that knowledge must also be
specified, and considerations related to processing (e.g., search space, storage,
efficiency) must guide representational choices at the level of both individual
constructions and the formal notation itself.

4 N. Chang, J. De Beule and V. Micelli

Linguistic representations in both frameworks are also assumed to interact
closely with structures in other domains, including in particular embodied, sit-
uational and world knowledge. The two frameworks differ in the details of how
such interactions are modeled, and even in how terms like embodiment are used.3
For the pursposes of this chapter, however, we focus on the specifically linguistic
knowledge expressed by the two grammatical formalisms and their mechanisms
of use. Both frameworks take these to be conceptually distinguishable from the
details of sensorimotor representations; world (ontological) knowledge; general
mechanisms of inference and belief update; and specific mechanisms of contex-
tual grounding and reference resolution. We will also refrain from addressing
in detail how language learning is modeled in each framework, though we will
highlight some connections to these topics where relevant.

This chapter is not intended as a comprehensive description of either formal-
ism; this volume and [15] provide a detailed introduction to FCG, and overviews
of ECG and its associated research framework can be found elsewhere [3, 6?].
But to ground our discussion, in the sections to follow we introduce the notational
basics of each, sufficient for discussing the noun phrase the mouse (also addressed
in [16]). Despite the relative simplicity of this example, the side-by-side compar-
ison it affords helps reveal some fundamental design issues and differences.

2 Informal Constructional Analysis of the mouse

A traditional analysis of the phrase the mouse might identify a determiner (the),
a noun (mouse), and a noun phrase (NP) combining the determiner and noun
in that order. For a construction-based approach, it is crucial to consider the
utterance’s meaning as well: a speaker uttering “the mouse” is engaging in an
act of reference, picking out an individual mouse uniquely identifiable to the
hearer in the discourse context. A straightforward constructional analysis might
have the structure shown in Figure 1, with three constructions:

– The: The word form the constrains the referent to be uniquely identifiable
to the hearer in context; other determiners may restrict features like number
(some mice) or proximity (these mice).

– Mouse: The word form mouse specifies that the referent’s ontological cat-
egory is a mouse. It might also specify that the referent refers to a single
thing (in contrast to the greater quantity specified by mice), or that it is an-
imate (or not, in the case of a computer mouse). Other nouns may constrain
additional qualities of the referent (e.g., semantic role, gender, countability).

– DeterminedNP: This construction has two constituents, corresponding to
the two constructions above. It imposes a word order constraint (the must
precede mouse), and its meaning is a referent in context—in fact the same
referent constrained by the two constituents. Here, the relevant constraints

3 Broadly speaking, embodiment in FCG emphasizes the constraints of using physi-
cally embodied agents, while embodiment in ECG emphasizes the constraints of the
human sensorimotor system.

Computational Construction Grammar 5

FORM MEANING

Referent
ont-category mouse
quantity 1
givenness uniquely-identifiable

DETERMINEDNP

THEthe Referent
givenness uniquely-identifiable

mouse MOUSE
Referent

ont-category mouse
quantity 1

Fig. 1. A graphical depiction of one analysis of example phrase. Constructions (in the
center) link the domains of form (left) and meaning (right). Each of the constructions
shown here (the DeterminedNP construction and its two constituents, the The and
Mouse constructions) contributes to and constrains the particular referent specified
by the phrase.

do not conflict; in general, such compatibility or agreement in features must
be met between determiners and nouns (hence *a mice, *these mouse).

The constructions in the middle of the Figure 1 reflect the phrase’s con-
stituent structure, mirroring that of a traditional syntactic parse tree (based
on a phrase structure analysis). (See Section 5.3 for an alternative dependency
analysis.) However, since these are not just syntactic symbols but constructions,
each construction also has a link (shown by horizontal bars) to form (on the left)
and meaning (on the right). The form domain contains the relevant word forms,
where the dotted arrow indicates the time line (and therefore word order).

The meaning domain contains several structures labeled Referent, each listing
features constrained to particular values (where ont-category is an abbreviation
for ontological category). Essentially, this structure summarizes any information
that is important for determining the actual referent of an expression in the
current context. (Determination in both formalisms is further discussed in section
3.3.) The double-headed arrows between the Referents indicate that their values
are shared (with values that originate non-locally, i.e. through such a binding,
shown in italics). The dashed border of the two Referent structures contributed
by the lexical constructions indicates a slightly different relationship than that
between the DeterminedNP construction and its Referent; we return to this
point below.

6 N. Chang, J. De Beule and V. Micelli

As should be apparent, even a noun phrase as simple as the mouse involves
many representational choices, with reasonable alternatives varying in both the
complexity of the structures defined and the generality of the phenomena they
account for. Our goal here is not to argue for the particular analysis adopted
here as the best or most general one possible; rather, we focus on the basic
representational toolkit involved for expressing a variety of concepts and relations
and compare those available in the ECG and FCG formalisms.

3 Formalizing Lexical Constructions

Diving now into the formal constructional analysis, we consider in this section
how the lexical constructions for our example are defined in each of the two
formalisms. We begin with the mouse construction shown in Figure 2. Both
structures capture a relatively straightforward pairing of form (the orthographic
string “mouse”) and meaning (the mouse ontological category associated with a
referent, whose quantity is additionally specified as 1). They also include gram-
matical information (e.g., that mouse is a singular noun), though they differ in
precisely how this information is expressed.4

;; "mouse" in FCG (template-based)
(def-lex-cxn Mouse-Cxn
 (def-lex-cat Mouse-Cxn
 :sem-cat ((schema ?ref [ReferentDescriptor])
 (quantity ?ref 1))
 :syn-cat ((schema ?w [WordDescriptor])
 (type Noun)
 (number singular)))
 (def-lex-skeleton Mouse-Cxn
 :meaning (== (ont-category ?ref [mouse]))
 :form (== (orth ?w "mouse"))))

// "mouse" in ECG
construction Mouse-Cxn
 subcase of Noun
 constructional
 self.number ← singular
 form : Word
 self.f.orth ← “mouse”
 meaning
 evokes ReferentDescriptor as ref
 ref.ont-category ← @mouse

ref.quantity ← 1

Fig. 2. Lexical constructions for mouse in FCG (left) and ECG (right).

A few differences in basic format are apparent even at first glance. Roughly
speaking, the format of FCG reflects the influence of the Lisp programming lan-
guage: internal structure is indicated with parenthesized lists employing prefix-
list notation, and variable names are marked with a leading question mark. In
contrast, the format of ECG reflects the influence of constraint programming
4 Both distinguish a language-specific number categorization (in English, nouns can
be either singular or plural) from a more general concept of number, which for clarity
will be called quantity in the notation.

Computational Construction Grammar 7

languages and inheritance-based ontologies: special keywords (in boldface) are
used to indicate internal structure and express inheritance relations and other
constraints, and dotted slot chains are used to refer to non-local structures.

The sections below take a closer look at the two constructions in Figure 2. To
ease comparison, we focus on how each captures the informal linguistic analysis
described in the previous section, deferring until Section 6 the details of how
constructions are used during language processing.

3.1 Nominal Constructions in FCG

The FCG definition formouse shown on the left in Figure 2 uses the def-lex-cxn
template for defining lexical units (described in [15]). This notation organizes the
various elements of the informal analysis in two parts. First, the def-lex-cat
clause specifies the linguistic categories (both semantic and syntactic) associated
with mouse: a variable ?ref is associated with the schema ReferentDescriptor
and the quantity 1, and a variable ?w is associated with the schema Word, the type
Noun and the number singular. Second, the def-lex-skeleton clause specifies
the ontological category (where square brackets on [mouse] denote reference to
an ontology item) and orthographic string.

In fact, this template is an abbreviation for a more elaborate “native” FCG
definition; we show the expanded version in Figure 3. Both styles of FCG defi-
nition contain the same information, but the template-based construction omits
details shared with other lexical constructions, allowing a more concise defini-
tion. As should become apparent, the template-based version is closer to the
level of abstraction used in the corresponding ECG definition, but we describe
the expanded version here to shed some light on how these structures are used.

The full lexical definition consists of two main sections (or poles) separated
by a double-headed arrow (<–>), corresponding to the meaning (or semantic) and
form (or syntactic) domains. Each pole includes two units, one named ?top-unit
and one named ?mouse-unit (where the leading question mark indicates that
these are variable names); this latter unit is a J-unit (as indicated by the op-
erator J). These units specify the constraints and categorizations relevant to
each domain, but they differ in the kinds of information they typically contain.
J-units generally contain specifically linguistic information, typically expressed
using semantic and syntactic categories (in the sem-cat and syn-cat lists, re-
spectively). Other (“regular”) units, like ?top-unit here) tend to be based on
perceptual or cognitive categorizations (here, the ontological category and the
perceived word string).5

3.2 Nominal Constructions in ECG

We now turn to the right side of Figure 2, which shows a simple ECG con-
struction for mouse. The high-level structure of the construction includes three
5 Regular units and J-units also behave differently during language processing, where
the J-operator and other notations (such as the TAG and footprints) notations play
a special role. Language processing will be discussed in more detail in Section 6.1.

8 N. Chang, J. De Beule and V. Micelli

(def-cxn Mouse-Cxn
 ((?top-unit (TAG ?meaning
 (meaning (== (ont-category ?ref [mouse]))))
 (footprints (==0 Mouse-Cxn)))
 ((J ?mouse-unit ?top-unit)
 ?meaning
 (sem-cat ((schema ?ref [ReferentDescriptor])
 (quantity ?ref 1)))
 (footprints (Mouse-Cxn))))
 <-->
 ((?top-unit (TAG ?form
 (form (== (orth ?w "mouse"))))
 (footprints (==0 Mouse-Cxn)))
 ((J ?mouse-unit ?top-unit)
 ?form
 (syn-cat ((schema ?wd [WordDescriptor])
 (type Noun)
 (number Singular)))
 (footprints (Mouse-Cxn))))))

Fig. 3. Lexical construction for mouse in FCG, expanded form.

blocks, where keywords (in boldface) indicate special terms and structures. The
constructional block contains information relevant to the construction as a whole,
while the form and meaning blocks (or poles) contain information relevant to
each domain. These poles are themselves structured, and can be referenced and
constrained within the construction. The term self allows reference to the con-
struction being defined, and self.f and self.m refer to the construction’s form and
meaning poles, respectively.

The Mouse construction is defined as a subcase, i.e. a more specific instance,
of the Noun construction. In fact, ECG constructions are all defined in a multiple
inheritance lattice, and a separate lattice defines represent schematic form and
meaning categories, or schemas. (Both inheritance and schemas will be discussed
further in Section 4.) Accessible structures can be constrained to instantiate
particular schema categories. Each block contains various constraints that apply
to the relevant domain, drawn from a fixed set of possibilities. We highlight a
few of the notations that express these constraints:

– Category constraints are indicated with a colon (e.g., the form pole must be
a Word), and role-filler constraints of the form x ←− y indicate that role (or
feature) x is filled by the (atomic) value y (e.g., the form pole is associated
with the orthographic string shown).

– The evokes ReferentDescriptor as ref declaration indicates that there is an in-
stance of category ReferentDescriptor present, accessible using its local name

Computational Construction Grammar 9

ref. Subsequent constraints specify that its feature ont-category be filled by
@mouse and its quantity set to 1. (Like the square brackets in the FCG defini-
tion, the @ symbol indicates reference to an external conceptual ontology.)

In short, the construction indicates that the Mouse-Cxn is a kind of Noun;
asserts constraints on the constructional (or grammatical) number feature and
the particular orthographic form; and evokes a ReferentDescriptor of a specified
ontological category and quantity.

For comparison, it may be useful to see how the ECG construction definition
is expanded during processing. Figure 4 shows the corresponding feature struc-
ture representation. Note that the feature structure for Mouse-Cxn also contains
two subsidiary feature structures for the Word and ReferentDescriptor categories
mentioned in the definition. As discussed in Section 4.2 and illustrated in Fig-
ure 6 below, these additional schematic structures are also defined as part of the
ECG formalism.



Mouse
number : singular

f :

[
Word
orth : ”mouse”

]
m :

ref :

[
ReferentDescriptor
ont-category : @mouse
quantity : 1

]


Fig. 4. Feature structure corresponding to the ECG mouse construction.

3.3 Determiners in ECG and FCG

The basic lexical constructions just defined are easily modified for the determiner
the. In accord with earlier accounts (e.g. [?]), we assume that determiners pro-
vide cues that help a hearer identify a referent in the discourse context. Thus, like
the mouse construction, they constrain a referent, but instead of specifying its
ontological category, they typically constrain features like number, gender and
proximity. In the case of the, the referent is asserted to be uniquely identifiable.

The constructions in Figure 5 are structurally similar to the mouse construc-
tions defined above. Each specifies that the is a Determiner (as the syntactic
category (type Determiner) in FCG and the subcase of Determiner constraint
in ECG); each specifies the relevant orthographic string; and each specifies a
value for the referent’s givenness feature (in FCG using the predicate (givenness
?ref uniquely-identifiable), and in ECG with the constraint ref.givenness
←− uniquely-identifiable).

The two formalisms differ slightly in how they handle the feature of number.
The FCG definition adds a number category to its list of syntactic categories,

10 N. Chang, J. De Beule and V. Micelli

;; "the" in FCG (template-based)
(def-lex-cxn The-Cxn
 (def-lex-cat The-Cxn
 :sem-cat ((schema ?ref [ReferentDescriptor]))
 :syn-cat ((schema ?w [WordDescriptor])
 (type Determiner)
 (number ?number)))
(def-lex-skeleton The-Cxn
 :meaning (== (givenness ?ref uniquely-identifiable))
 :form (== (orth ?w "the"))))

// "the" in ECG
construction The-Cxn
 subcase of Determiner
 form : Word
 self.f.orth ← “the”
 meaning
 evokes ReferentDescriptor as ref
 ref.givenness ← uniquely-identifiable

Fig. 5. Lexical constructions for ‘the’ in FCG (left) and ECG (right).

whose value remains underspecified (as indicated by the variable ?number). The
ECG definition does not mention number explicity. Note that ECG definitions
for determiners like the plural some or singular a) would include a constructional
block with a constraint on the number feature, thus more closely resembling the
mouse construction.

4 A First Comparison

The parallel definitions of lexical constructions in FCG and ECG given in Sec-
tion 3 are based on the same linguistic analysis and designed to maximize simi-
larity across the two formalisms. It is not entirely surprising, then, that they have
much in common: each represents the basic forms and meanings involved, as well
as additional grammatical information associated with reference, as expressed by
common nouns (like mouse) and determiners (like the).

But these examples also exhibit some striking differences. Perhaps the most
important distinction between the formalisms is the treatment of categories and
inheritance. ECG structures are all defined within inheritance lattices specifying
constructional and other relationships. Many ECG notations thus allow refer-
ence to other existing structures, for example to inherit features and values, or
to assert values or bindings on connected structures. FCG constructions, on the
other hand, rely on category lists associated with each domains; each construc-
tion is thus relatively stand-alone, and defined independently of other structures
that may contain similar information. In the sections below we discuss several
representational consequences of this fundamental difference.

4.1 Inheritance and Categorization

Categories play a prominent role in most linguistic theories: they capture gener-
alizations about shared structure and behavior across different linguistic units.

Computational Construction Grammar 11

Part of speech categories, semantic (or thematic) roles, lexical subcategorization
types, speech act types, and phonological categories are all well-established ways
of carving up various linguistic domains into groups exhibiting similar proper-
ties. Both ECG and FCG allow such categories to be expressed, but they differ
in the approaches taken, as well as the degree to which the relationships among
categories is made explicit.

Inheritance hierarchies in ECG. The ECG approach to categories is based on
inheritance networks, where shared properties are expressed at the highest level
of generalization possible and inherited by subsidiary categories and instances.
That is, ECG constructions are defined (using the subcase of relation) within a
multiple inheritance hierarchy (or lattice); structures and constraints defined in
a base (or parent) construction are inherited by and accessible to their subcases,
and thus need not be explicitly specified. The subcase can impose additional
constraints, or refine existing ones.

construction Mouse
subcase of SingularNoun
form: Word

self.f.orth <- "mouse"
meaning

ref.ont-category <- @mouse

general construction Singular
constructional: AgreementFeatures

self.number <- singular

general construction SingularNoun
subcase of Noun, Singular

general construction Noun
constructional: NominalFeatures
form
meaning

evokes ReferentDescriptor as ref

schema NominalFeatures
 subcase of AgreementFeatures

case
gender

schema AgreementFeatures
number
person

schema ReferentDescriptor
ont-category
givenness

schema Word
orth
phon

schema Mouseconstruction The
subcase of Determiner
form: Word

self.f.orth <- "the"
meaning

ref.givenness <- uniquely-identifiable

construction Determiner
constructional: NominalFeatures
form
meaning

evokes ReferentDescriptor as ref

Fig. 6. A portion of the ECG construction lattice for the lexical items in the ex-
ample, showing both constructions (white boxes) and schemas (shaded boxes). (Solid
arrows indicate subcase (or inheritance) relations, while dotted lines indicate other
links through the constructional, form or meaning domains.)

A fragment of the constructional lattice relevant to the lexical constructions
in our example is shown in Figure 6, where both the Mouse and The con-
structions have been redefined to exploit inheritance. Focusing on the white
construction boxes, we can see that this version of the Mouse construction is

12 N. Chang, J. De Beule and V. Micelli

defined as a subcase of the SingularNoun construction, which in turn is a
subcase of both Noun and Singular. These abstract ancestral constructions—
marked general to indicate their lack of concrete form constraints—contain some
constraints shared across noun constructions (the evokes statement and number
←− singular constraint), leaving only the most specific constraints for the Mouse
construction.

These examples illustrate how certain linguistic generalizations can be con-
cisely captured through inheritance. Though not shown, the construction for the
irregular pluralmice inherits from the Plural and PluralNoun constructions,
which are analogous to Singular and SingularNoun, respectively. Similarly,
determiners that specify number (such as these or a) are defined as subcases of
both Determiner and the appropriate number-specifying construction.6

Categories in FCG. Categories are a fundamental notion in FCG, expressed
as predicates in the sem-cat and syn-cat lists. Constructions that have such
predicates in common implicitly form a category: hence both mouse and the are
associated with the syntactic category schema, which is further specified to be
a WordDescriptor, and they also both include the syntactic category number.

Inheritance networks like those of ECG have not yet been much explored
in FCG: there is no explicit notion of inheritance for constructions, meaning or
form components, or semantic and syntactic categories. Recent developments,
however—such as the use of templates [15] and distinctive feature matrices [17]—
can be seen as moving in this direction.7 Templates, for example, provide a means
of capturing similarities across constructions, allowing a more concise, uniform
declaration of constructions (as illustrated by the alternate definitions for mouse
above). Note, however, that templates currently serve mainly as an abbreviation:
they do not specify inheritance relationships. That is, there is no mechanism for
allowing one construction to refer to or inherit from another, and more general
lexical categories like Noun are not themselves defined as structures that can
inherit features.

Of course, the use of templates in FCG is relatively recent and their precise
form is still under development. Thus it may be possible to extend the template
approach (as proposed in Section 5) to exploit the benefits of inheritance and
type hierarchies. These benefits become especially important as grammars grow
larger: keeping track of the various dependencies between constructions for any
non-trivial language phenomenon is a tedious undertaking. Adopting approaches
based on inheritance would enable more concise grammars that reduce errors.
6 Inheritance is only one way of capturing complex category structure of the kind
described by [?], and the particular multiple inheritance lattices used by ECG are
intended only as an approximation. While current versions of ECG allow overriding of
inherited constraints and the incorporation of some probabilistic information, further
refinements would be needed to handle categories including scalar and continuous
quantitative values, prototype structures and other aspects of human categorization.

7 See also [4], which describes FCGlight (a core subset of FCG that uses of lattices of
constructions); and [1].

Computational Construction Grammar 13

4.2 Form and meaning representations

The lexical examples we have seen also illustrate different approaches to repre-
senting the domains of form and meaning. Organizationally, FCG distinguishes
specifically linguistic categorizations (as listed in sem-cat and syn-cat) from
the concrete forms and meanings taken to be based on perceptual or cognitive
categorizations (associated with the meaning and form parameters. ECG con-
structions do not explicitly represent this difference in the notation itself (except
for the use of @ to denote ontological categories).

A more important difference lies in how these categories are represented.
As noted before, all categorizations (linguistically specific or not) in FCG are
expressed in predicate-argument format, and are independently defined as part
of each relevant consruction. The particular style of semantic representation
can vary; though the examples shown in this section have a declarative flavor
(following the informal analysis presented in Section 2), other studies show how
it is also possible to adopt procedural semantics [14] or frame semantics [?].

In ECG, both forms and meanings are represented using a special-purpose
schema formalism, similar to that used for constructions and also defined within
an inheritance lattice (see Figure 6 for some examples, shown in shaded boxes).
ECG schemas resemble depictions of semantic frames [?] and image schemas
in the literature, and are similarly used to bring together a set of associated and
interdefined roles or features comprising a complex concept. The roles defined in
a schema can be referred to and constrained by other schemas and constructions.
Hence, both lexical constructions assert form constraints on the orth role of the
Word schema, as well as meaning constraints on the roles of the ReferentDescriptor.

As with constructions, we see that ECG emphasizes the interdefined nature
of constructions and their associated forms and meanings. Separately defined
schemas capture various linguistic generalizations and expectations, allowing
brevity in definitions and enforcing some consistency across constructions. FCG
constructions, meanwhile, each independently define their relevant predicates,
which are therefore less constrained. This tradeoff—between explicit represen-
tation of generalizations on the one hand, and freedom of expression on the
other—will manifest itself in several other ways to be discussed.

4.3 Constructional Features and Grammatical Categories

The two formalisms differ, finally, in how certain kinds of grammatical informa-
tion are treated. Specifically, while all categories and constraints in FCG must be
in either the meaning or form pole, ECG allows some information to be expressed
in the constructional lattice:

– Constructional inheritance: Lexical and grammatical categories (like noun
and verb) can themselves be represented as constructions and associated with
specific roles and values. Thus, the Mouse construction can be defined as a
subcase of the SingularNoun construction, inheriting relevant properties
it may share with other singular nouns.

14 N. Chang, J. De Beule and V. Micelli

– Constructional features: The constructional domain itself can be defined as
having particular features, often inherited from ancestral types. In Figure 6,
AgreementFeatures and NominalFeatures are schemas in the constructional do-
main that list various grammatical features. These are not strictly about
either the form or meaning domain; rather, they are associated with the
constructional connection between the two.

In both cases above, the equivalent information can be expressed in FCG
but must be explicitly included in every constructional definition (unless the
template system could be extended to do this, though this would be a non-
trivial modification).

In each formalism, it remains largely at the discretion of the grammar writer
how to decide precisely which features ought to be defined and what domain
they belong in.

5 Constituent Structure and Agreement

We now turn our attention to the DeterminedNP construction. This construc-
tion combines a determiner and a noun into a larger phrasal unit. Combining
smaller units into larger chunks and phrases and thus exhibiting hierarchical con-
stituent structure is a defining feature of grammatical constructions. Like lexical
constructions, such constructions can impose constraints in both the form and
meaning domains, such as word order (form) or role-filler bindings (meaning).
They may also enforce compatibilities, or agreement, across constituents. Both
ECG and FCG have ways of introducing constituents, specifying relational con-
straints and enforcing agreement.

5.1 Determined NPs in ECG

The DeterminedNP construction in Figure 7 shows how determined noun
phrases with constituent structure might be defined in ECG. The intuition be-
hind the analysis is that such phrases draw on both determiners and nouns to
provide crucial information for constraining an act of reference, resulting in a sin-
gle larger unit (as in our informal analysis). Like lexical constructions, phrasal
constructions have a form and meaning pole; they also, however, have a con-
structional block within which constructional constituents as well as additional
constraints—for example, to enforce agreement—are specified.

Here, the two constituents have local variable names det and nom, and they
are typed respectively as Determiner and Noun. These constituent names
allow simple access to their respective form and meaning poles. In the form
block, their form poles (det.f and nom.f) are specified as coming in a particular
order (expressed using the before relation). The meaning of the overall expression
is itself constrained to be a ReferentDescriptor—which, recall, is also the type of
the ref argument evoked in the meanings of each of the two constituents. That
is, all three (the composite structure and each of the two constituents) have

Computational Construction Grammar 15

construction DeterminedNP
constructional

constituents
det : Determiner
nom : Noun

constraints
self.number ←→ det.number
self.number ←→ nom.number

form
det.f before nom.f

meaning : ReferentDescriptor
self.m ←→ det.ref
self.m ←→ nom.ref

Fig. 7. A complex DeterminedNP construction.

accessible ReferentDescriptors. Thus, the last two constraints simply identify the
evoked referents of the constituents with the meaning of the overall phrasal
construction. Note that these constraints enforce all the roles defined within the
ReferentDescriptor structures to have the same value, including the ont-category,
givenness, and quantity roles. This can be seen as a kind of semantic agreement:
the referent that all of these constructions describes is the same, and therefore
the constraints that apply to it as also the same.

Turning to the constructional domain, we see another kind of agreement
enforced by the constraints in the constructional block. These simultaneously
encode agreement between the two constituents’ number features (notated here
as det.number and n.number) and ensure that this value is shared by the noun
phrase (self.number). All of these require that these constructions are typed so
that they have an accessible number feature (in our analysis, their constructional
poles are all constrained to be of type NominalFeatures). This agreement might
be seen as the more prototypical grammatical agreement, based on explicitly
grammatical features like number that may not have any basis in the meaning
domain alone.8

5.2 Determined NPs in FCG

An account of how determined noun phrases might be handled in FCG using
phrasal construction templates is given in [15]. This section provides an alterna-
tive analysis that is as close as possible to the one given for ECG, while remaining
8 Of course, it is not always possible to draw a neat boundary between the semantic and
constructional domains, especially with respect to a linguistically oriented schema
like ReferentDescriptor.

16 N. Chang, J. De Beule and V. Micelli

within the limits of what is currently possible in FCG. Besides enabling a more
detailed comparison, this variation is also intended to add another perspective
to the relatively recent development of FCG templates that may help shed light
on the benefits and drawbacks of different approaches.

;; DeterminedNP (template-based definition)
(def-phrasal-cxn DeterminedNP
 :syn-cat ((type DeterminedNP) (number ?number))
 :sem-cat ((schema ?ref [ReferentDescriptor]))
 :constituents
 ((lex-cxn ?Determiner
 :syn-cat ((type Determiner) (number ?number))
 :sem-cat ((schema ?ref [ReferentDescriptor]))
 :meaning ((givenness ?ref ?givenness))
 :form ((orth ?det ?orth-det)))
 (lex-cxn ?Noun
 :syn-cat ((type Noun) (number ?number))
 :sem-cat ((schema ?ref [ReferentDescriptor]))
 :meaning ((ont-category ?ref ?ont-cat))
 :form ((orth ?N ?orth-N))))
 :form ((before ?det ?N)))

;; DeterminedNP (expanded definition)
(def-cxn DeterminedNP
 ((?top-unit (footprints (==0 DeterminedNP))
 (sem-subunits (?Determiner ?Noun)))
 (?Determiner
 (meaning (== (giveness ?ref ?giveness)))
 (sem-cat (==1 (schema ?ref [ReferentDescriptor]))))
 (?Noun
 (meaning (== (ont-category ?ref ?ont-cat)))
 (sem-cat (==1 (schema ?ref [ReferentDescriptor]))))
 ((J ?DeterminedNP ?top-unit (?Determiner ?Noun))
 (sem-cat ((schema ?ref [ReferentDescriptor])))))
 <-->
 ((?top-unit
 (TAG ?form (form (== (before ?det ?N))))
 (footprints (==0 DeterminedNP))
 (syn-subunits (?Determiner ?Noun)))
 (?Determiner
 (form (== (orth ?det ?orth-det)))
 (syn-cat (==1 (type Determiner)
 (number ?number))))
 (?Noun
 (form (== (orth ?N ?orth-det)))
 (syn-cat (==1 (type Noun) (number ?number))))
 ((J ?DeterminedNP ?top-unit (?Determiner ?Noun))
 ?form
 (syn-cat ((type DeterminedNP) (number ?number))))))

Fig. 8. DeterminedNP construction in FCG, both template and expanded versions.

Computational Construction Grammar 17

Concretely, we define a phrasal construction for determined noun phrases
in Figure 8, where the first definition expands (using the appropriate tem-
plate code for def-phrasal-cxn) to the second. Like the lexical constructions,
the DeterminedNP construction has both meaning and form components, each
including both regular units (?top-unit, ?determiner, and ?noun) and a J-
unit. The basic idea of constituency is captured by the specification that the
?top-unit lists the other two regular units in its subunits, corresponding re-
spectively to a determiner and a noun (again, in both the meaning and form
domains).

On the syntactic side, the construction furthermore specifies the constraint
(before ?det ?N) on the word order of its constituents. On the semantic side
it requires that the ReferentDescriptor schemas of both constituents are the
same (through a variable equality). Agreement in number is also achieved through
variable equalities.

5.3 Comparing Complex Constructions

The two approaches to representing complex constructions demonstrated in the
preceding sections are both capable of expressing constituency, word order and
agreement. They differ, however, in several key respects.

First, as elsewhere, the ECG formalism avails itself of type lattices for both
constructions and schemas. Thus, various constraints require that relevant fea-
tures are defined and accessible for a given structure (i.e., a slot chain like
det.number implies that det is defined as having inherited a number role). This
stands in sharp contrast with FCG, which does not require typing of this kind:
previously unspecified features are added during processing if not already de-
fined, and only if it is explicitly indicated that this should be the case.

The less type-constrained approach of FCG may be seen as a double-edged
sword: while it leaves more freedom of choice, it also requires that the grammar
writer maintain the soundness of his or her grammars and ensure that the rele-
vant semantic and syntactic categories of constituent units are percolated prop-
erly to newly created units. For instance, although the ?DeterminedNP in the De-
terminedNP construction unit is specified as an instance of the ReferentDescriptor
schema, neither its givenness or ont-category values are specified. These could
be inferred from its constituents, and the template could perhaps be changed to
do this automatically, but again, doing so would be far from trivial. In contrast,
ECG makes some structural assumptions that allow certain constraints to be
succinctly stated, though possibly at the cost of flexibility. Thus the identifica-
tion of the various ReferentDescriptors allows all their roles to be bound with one
constraint, both across constituents and with the overall resulting construction.

Second, the two formalisms allow somewhat different options with respect
to how particular kinds of features are expressed. As noted earlier, grammatical
features and categories are typically expressed in the constructional domain in
ECG (though as demonstrated above, agreement can also be enforced just in
the form or meaning domain). As with the lexical constructions, FCG tends to
express such grammatical information by including it as a syntactic category.

18 N. Chang, J. De Beule and V. Micelli

This difference may not ultimately affect expressive power, but it does reflect
different theoretical views of particular linguistic concepts.

6 Processing

Both frameworks under comparison are committed to the idea that grammatical
formalisms should do more than just describe language: they should also support
processes of language use. In this section we compare how processes of language
use interact with the linguistic representations encoded by the two grammatical
formalisms we have described.

6.1 Parsing and Production in FCG

The FCG formalism was designed to support processes of both parsing (mapping
from form to meaning) and production (mapping from meaning to form). These
processes have been described in detail elsewhere; we review them briefly here.

The internal structure of the FCG construction reflects a number of sym-
metries in how the different components are used during language processing,
depending on whether parsing or production is performed. In particular:

– Each pole corresponds to the input to one process and to the output of the
other: an utterance representation in the form pole is the input to parsing
and the output of production, and vice versa for meaning representations in
the meaning pole.

– The regular units and J-units together specify constraints and categoriza-
tions relevant to each domain, but they behave differently with respect
to the match and merge operations at the core of language processing in
FCG. Briefly, matching is used to test whether a transient structure fits
(i.e., matches) a given construction; it thus acts as a filter on applicable
constructions; merging then effects the construction’s application and con-
tributes additional information. Regular units in the input pole are matched,
and thus are typically used to select which constructions to apply. J-units
and regular units in the output pole are merged and thus provide additional
constraints and categorizations.

In both processes, constructions operate on a transient linguistic structure.
Before processing starts, the transient structure is initialized with the meaning
that needs to be verbalized (production), or with the form that needs to be
parsed (parsing); this structure is then gradually transformed to the desired
output structure. We describe both processes for our example below.

Parsing. The aim of the parsing process is start from an empty meaning and
gradually add content until a full meaning specification (and a complete parse)
is achieved. The initial transient structure for parsing the mouse is as follows:

Computational Construction Grammar 19

((top))
<-->
((top (form ((orth W1 "the") (orth W2 "mouse")

(before W1 W2)))))

The form side of the linguistic structure specifies a single constituent named top,
containing three predicates that together fully specifying the string “the mouse”.
These predicates include the constants W1 and W2 representing the actual words.

The application of the mouse-cxn to this structure is licensed through the
match and merge operations mentioned above. The syntactic side of the con-
struction is matched against the syntactic side of the transient structure (exclud-
ing J-units), resulting in a set of bindings for the variables in the construction.
The features marked by the special TAG operator (e.g., the meaning and form
features in the mouse-cxn of Figure 2) cause the tag-variable (e.g., ?meaning
and ?form) to be bound to the matched set of feature values.

In the example, the mouse-cxn is triggered by the predicate (== (orth
?word "mouse")) in its top unit, where the includes operator == indicates that
other components besides the specified meaning are also allowed. The construc-
tion therefore matches the initial structure with the following bindings: ‘[?top-
unit/top, ?form/(form ((orth W1 “mouse”))),?w/W1].9

The merge operation then results in a new, modified transient linguistic struc-
ture that is the union of the matched structure with the additional constraints
specified in the construction. Merging in FCG thus roughly corresponds to unifi-
cation in ECG and other unification- or constraint-based formalisms. Given the
match-bindings obtained earlier, both sides of the mouse-cxn also merge with
the transient linguistic structure.

In parsing, the resulting structure is as below:

((top (subunits (mouse-unit)))
(mouse-unit

(meaning ((ont-category ?ref-1 [mouse])))
(sem-cat ((schema ?ref-1 [ReferentDescriptor])

(quantity ?ref-1 1)))))
<-->
((top (form ((orth W1 "the") (before P1 W1 W2)))

(subunits (mouse-unit)))
(mouse-unit

(form ((orth W2 "mouse")))
(syn-cat ((schema W2 [WordDescriptor])

(type Noun)
(number singular)))))

Note that the transient structure now includes a new unit named mouse-unit
on each side, corresponding to the constructional J-unit. This new unit includes
9 If variable ‘?x1’ is bound to value X1, and variable ‘?x2’ to X2 etc., this is denoted
as [?x1/X1, ?x2/X2, ...].

20 N. Chang, J. De Beule and V. Micelli

the tagged form predicate matched by the mouse-cxn, and its meanings have
additional semantic categories as specified by the mouse-cxn)

Production. Production in FCG is entirely analogous to parsing, but with the
role of the poles reversed. The initial structure for producing our example is as
follows:

((top (meaning
((ont-category Ref [mouse])
(giveness Ref uniquely-identifiable)))))

<-->
((top))

Similar to the parsing situation, the semantic side of the mouse-cxn matches
the semantic side of the initial transient linguistic structure above because the
construction requires only that there is a unit, with variable name (?top-unit),
which contains a meaning feature including the component (ony-category ?ref
[mouse]). Matching results in the bindings: ‘[?top/top, ?meaning/(meaning
((ont-category Ref [mouse]))), ?ref/Ref]’.

Merging then results in the following modified structure:

((top (meaning ((giveness R uniquely-identifiable]))
(subunits (mouse-unit)))

(mouse-unit
(meaning ((ont-category R [mouse])))
(sem-cat ((schema R [ReferentDescriptor])

(quantity R 1)))))
<-->
((top (subunits (mouse-unit))
(mouse-unit

(form ((orth ?word-1 "mouse")))
(syn-cat ((schema ?word-1 [WordDescriptor])

(type Noun)
(number singular))))))

As in parsing, all constraints in the construction missing in the initial tran-
sient structure have been added, and the new mouse-unit includes in its meaning
the tagged component corresponding to the matched meaning of mouse-cxn.

Although not an issue for our simple example, many problems can arise
in the search for matching constructions during processing and the selection
of the best set of constructions to apply. FCG provides several mechanisms for
coping with these challenges. These include the use of different goal tests (such as
reentrance, in which a produced utterance is re-parsed using the current grammar
to test for interpretability); the option of continuing processing if an analysis
is insufficient; and the possibility of associating conventionality and preference
scores with constructions as heuristics for guiding search. These strategies are
explained in more detail elsewhere [15].

Computational Construction Grammar 21

6.2 Constructional Analysis in ECG

In this section we briefly summarize how ECG constructions support language
comprehension, as implemented by the construction analyzer described by [2].
The term constructional analysis as used here is analogous to parsing in FCG:
it is the constructional analogue to syntactic parsing—that is, the identification
of which linguistic structures are instantiated in a particular utterance—where
the structures crucially include semantic information.

Overview. The input to constructional analysis is an ECG grammar (including
both schema and construction lattices), along with the utterance to be analyzed,
and (optionally) a situation description. All schemas and constructions are first
translated into a feature structure representation, ensuring that all inherited
roles, constituents and constraints are included. Earlier we showed the feature
structure for mouse in Figure 4; Figure 9 shows a feature structure version of
the DeterminedNP construction.



DeterminedNP

det :


Determiner
m :
ref : 1

number : 2


nom :


Noun
m :
ref : 1

number : 2


number : 2

m : 1

[
ReferentDescriptor
ont-category :
givenness :

]


Fig. 9. Translation of the DeterminedNP construction into a feature structure. The
features shown correspond to the two constituents (det and nom), the number con-
structions feature and the meaning pole m. Identification bindings are repre-
sented using boxed index numbers, where indices with the same number are
bound to the same value.

The analyzer processes utterances from left to right, incrementally building
up an analysis graph (a set of constructional instances or constructs linked by
constituency relations) and a semantic specification, or semspec (a graph of the
meaning schemas associated with all constructs in the analysis). In the broader
research context for which ECG was developed, this semspec is an intermediate
structure whose purpose is to support two connected language understanding
processes: (1) contextual resolution, which grounds this interpretation in the sit-
uational context; and (2) embodied simulation, which draws on richer embodied

22 N. Chang, J. De Beule and V. Micelli

structures to yield further context-sensitive inferences [?]. Here we focus on how
the semspec is built up during analysis.

The construction analyzer described by Bryant (2008) uses unification as
the basic mechanism for composing constructions and verifying that their con-
straints are consistent, where both constructions and schemas are represented
as typed feature structures with unification constraints as specified by the ECG
formalism. But the search for the best analysis also exploits many heuristics
to improve efficiency, limit search and approximate aspects of human language
processing, including:

– Incremental interpretation: the analyzer allows incremental left-to-right in-
terpretation of the utterance. To do this, it employs left-corner parsing tech-
niques [9] to keep track of competing analyses and update their scores, where
partially matched subportions of complex constructions provide top-down
expectations about which constructions may next be encountered.

– Best-fit interpretation: the analyzer defines a quantitative heuristic for com-
bining information from disparate domains, ranking candidate interpreta-
tions, and guiding parsing decisions. The implementation is a Bayesian prob-
abilistic model that integrates information affecting the likelihood of the
analysis (e.g., lexical and constructional frequencies; the likelihood that one
construction has another as a constituent; and the likelihood that a schema
has a particular kind of filler in a given role).

– Partial interpretation: the analyzer produces partial analyses even when the
input utterance is not covered by the grammar or is missing constituents.
An extension to the analyzer permits analyses with omitted constituents (as
often encountered in, for example, Mandarin) by integrating the score of an
interpretation with the results of the contextual resolution process.

In sum, the analyzer is consistent with the constructional view, drawing on
all available information at every step to ensure that syntactic, semantic and
constructional constraints are satisfied. Crucially, the early incorporation of se-
mantic, pragmatic and statistical constraints can dramatically reduce the search
space that may result from purely syntactic approaches.

Example. We consider the simple case of analyzing the input sentence string
“the mouse” given a grammar containing just the constructions defined earlier.
Following the left-corner parsing algorithm, the analyzer maintains a stack of
all the constructs (instances of constructions) recognized so far, all labeled as
incomplete or complete; incomplete constructs are also annotated with which
constituents still remain to complete it. Processing unfolds in several steps:

– The analyzer reads in the first word “the” and retrieves the The construction
based on the orthographic form and adds it to the current stack of available
constructs. Since it has no constituents remaining, it is recorded as complete.

– All constructions of which The is a subcase (here, just the Determiner
construction) are added to the stack as complete.

Computational Construction Grammar 23

– Because the first constituent of the DeterminedNoun construction is typed
as a Determiner, it is placed on the stack and a constituent binding (be-
tween the The construction and its first constituent) is attempted. The bind-
ing is successful, resulting in a partial semspec consisting of the Determiner
construction’s evoked ReferentDescriptor being bound with the ReferentDescrip-
tor of the DeterminedNoun construction; this structure is also specified
having a givenness status of uniquely-identifiable. The DeterminedNoun con-
struction has now scanned past the Determiner constituent.

– The analyzer reads in the second word “mouse” and retrieves the Mouse con-
struction. Similar to before, it places Mouse as well its parent construction
type Noun on the stack as complete.

– The DeterminedNoun construction placed on the stack earlier successfully
scans its next unfulfilled constituent, adding the constituent binding to its
nom constituent and updating the semspec with the relevant bindings.

– The DeterminedNoun is now marked as complete; since the utterance string
has been exhausted, it has been successfully parsed.

Figure 10 shows the output of the ECG constructional analyzer on our simple
example of the mouse. In fact, this structure shows both (a portion of) the
analysis graph and its associated semspec. (The form domain is not shown.)
In brief, each large box corresponds to an instantiated construction or schema,
shown with its constituents or roles. Thus, the box labeled DeterminedNP has
as top-level features its two constituents det and nom, its constructional number
feature, its meaning pole m and the evoked ReferentDescriptor ref. The boxed
numbers indicate shared values, many referring to structures not shown in this
reduced figure, but note that the boxed 2 indicates that ReferentDescriptor is
shared in several places: the overall meaning of the DeterminedNoun construction,
its ref slot as well as those of its two constituents.

Though beyond the scope of the example, it may be illuminating to take
the analysis above a few steps further. Once the DeterminedNP has been
successfully matched, various constructions with an initial constituent matching
that construction would be added to the stack for consideration. These include
constructions corresponding to a variety of possible completions, including The
mouse ran, The mouse ran past, The mouse ran past the barn and even The
mouse ran past the barn fell. Depending on the actual input, these constructions
would differ in, for example, how much of the form they account for, the seman-
tic likelihood of the associated semspec, and the constructional likelihood. The
combined scores is used to prune the set of candidate parser actions and select
the best one.

The constructional analyzer has been applied to a variety of linguistic phe-
nomena, including modeling families of related argument structure constructions
[5], early Mandarin constructions [11] and Hebrew morphological constructions
[13]. Besides serving as a platform for linguistic analysis, it has also been applied
as a psycholinguistic model of reading time data [2], and versions of the analyzer
have been integrated in models of child language acquisition [3, 11]. Ongoing
research has integrated ECG representations of mental spaces and metaphor

24 N. Chang, J. De Beule and V. Micelli

Fig. 10. The semantic specification resulting from analyzing “the mouse”.

into the constructional analysis process (Feldman & Gilardi, In prep.), similar
to earlier proposals [12?].

6.3 Two Processing Models

Major differences between FCG and ECG can be seen in their processing models.
Although in some ways not surprising, given their different goals, it is neverthe-
less interesting to compare how the two frameworks handle essentially the same
input. The comparison is most direct for the comprehension models: the two
formalisms are subject to the same high-level requirements that they must se-
lect candidate constructions, check whether they fit with the current transient
structure (in FCG) or partial analysis (in ECG), and choose the overall best
set of such constructions. Where they differ is in what kinds of information are
available for each of these steps, and what criteria they use for making decisions
and prioritizing their respective searches. We discuss these differences below.

Bidirectionality The most obvious difference between the two formalisms is
defined by an absence: ECG currently lacks an implemented model of process-
ing, and cannot thus be said to provide a full model of both sides of the usage
coin. This asymmetry is due in part to the focus in ECG on building cogni-
tively plausible models, since the preponderance of psycholinguistic evidence is
in comprehension. In principle, however, ECG grammars are declarative sets of

Computational Construction Grammar 25

constraints that state relationships between form and meaning that should hold
in production just as in comprehension. Thus, it is possible that production
in ECG would draw on similar data structures and processes as used in com-
prehension (best-fit combination of evidence, prioritization based on semantic
and cognitive heuristics, etc.). One hypothesis is that production may employ
the same grammar structures (i.e., construction and schema definitions) as in
comprehension, but with different usage statistics.

As noted earlier, the structural components of FCG constructions are used
differently in parsing and production: in parsing, regular syntactic units are
matched and J-units are merged, whereas in production the regular semantic
units are matched, and J-units are merged. FCG thus makes a more specific
claim about the relation between parsing and production than ECG can yet
make—and it may well be that a working production model for ECG would
make quite different kinds of claims, especially if (as conjectured above) the
declarative structures of ECG are able to support both kinds of processes.

Matching, Merging and Unification Both parsing and production in FCG
rely on the distinction between matching and merging: the match performs the
check or filter on candidate constructions, and the merge causes additional con-
straints from applicable constructions to be unified into the transient structure.
Comprehension in ECG similarly involves determining which constructions out
of the whole grammar apply, and then using unification to produce the interim
semantic specification. The first step employs some heuristics to reduce the set
of possible constructions: specific forms (typically orthographic strings) observed
in the utterance are directly associated with constructions including those forms;
and (as described earlier) the combination of left-corner parsing with construc-
tional types restricts the set of candidate constructions at any given stage of
processing. Constructions passing through this initial filter must still be tested
for whether they can be unified with the analysis in progress; successful uni-
fication at this stage acts as both a filter on candidate constructions and the
mechanism for combining all relevant constructional constraints. It thus corre-
sponds to both matching and merging in FCG.

Essentially, both frameworks have devised different strategies to cope with
the computational expense of unification. In FCG, the split between simpler
matching heuristics and more expensive merging operations allows some degree
of pre-optimization. In ECG, costly unification is part of the matching process,
but the availability of a lattice of constructional types helps to compensate for
that expense by supplying useful heuristics that restrict the search space of
constructions.

Note, however, that the increased efficiency afforded by the use of inheritance
in ECG may come at a price: changes to the grammar have potentially wide-
ranging effects, and may necessitate costly measures to ensure consistency in the
inheritance network. While such changes can be restricted to those that have
minimal impact on the network, in general the cost of maintaining consistency
may make inheritance impractical for situations in which grammars are liable

26 N. Chang, J. De Beule and V. Micelli

to undergo frequent changes. But it is precisely situations involving dynamically
changing grammars that are the overriding (and titular) concern in FCG.

It should also be mentioned that it is possible in FCG to skip the matching
and directly apply merging. Although this strategy has not yet been fully inves-
tigated, initial results indicate that it indeed leads to an explosion of the search
space. But it also facilitates less restricted and hence more creative usages of
constructions, which may be useful both for learning and for achieving robust
handling of unfamiliar input.

Structural flexibility At first glance the two formalisms differ in the surface
impressions they make. In both content and appearance, ECG is heavily influ-
enced by work in frame semantics and cognitive linguistics. The notation itself,
though integrated with processes of language learning and use, is expressed in a
constraint language that avoids explicitly procedural information. ECG’s schema
and construction definitions act as data structures that are created, used and
altered by the language learning and comprehension models. FCG, on the other
hand, stems more directly from work in artificial intelligence and symbolic pro-
gramming. Though FCG constructions include many declarative constraints,
they also have operations that are closely tied to aspects of processing (espe-
cially when shown in their expanded form). In a way, FCG constructions act like
programs that transform a transient linguistic structure as data.

It is difficult, however, to draw too fine a line between declarative and pro-
cedural aspects of each formalism. Both formalisms are, of course, data in the
sense that a separate processing engine ultimately controls their execution, veri-
fying that the constraints they specify hold or performing the actions they entail.
By the same token, the various notations employed by each formalism have di-
rect effects on processing and thus include procedural information in that sense.
Hence, despite the surface differences, most of the constraints expressed in each
language can be seen in both lights.

One possible way in which FCG may exhibit a more procedural orientation
is provided by TAGs and J-units. With TAGs, a construction can explicitly
instruct the match process to remember a binding for a tag variable. Such a
variable acts as a local variable in standard programs, and serves to temporarily
store a value until it is needed again later, e.g. in a J-unit. J-units in turn
serve to provide explicit instructions to the merge process. They specify how to
change constituent structure and, in combination with tags, and how to move
information between constituents.

Again, however, such effects could be viewed in terms of a set of constraints
on the intermediate and final structures involved. The crucial observation here
might center not on how these effects are described, but instead on what they
do—in particular, the fact that they change constituent structure in this manner.
As noted earlier, each FCG constructions specifies precisely the effects (agree-
ment, categories, etc.) that apply to the resulting transient structure, which
means that they are relatively free to change the internal structure. As a result,
the constituent structure at the end of processing may be difficult to infer di-

Computational Construction Grammar 27

rectly from constructional definitions. In ECG, on the other hand, constituent
structure generally follows that declared in the constructional domain; while the
semantic structure need not mirror this structure, the final constructional struc-
ture is related relatively directly to that specified in construction definitions.
This difference reflects yet again the tendency toward flexibility and freedom in
FCG, versus the importance of motivated constraints in ECG.

Cognitively motivated processing Last, but not least, the two processing
models differ markedly in the phenomena they target. FCG models are designed
to be functional : they are intended to satisfy the input and output constraints of
communication systems, often those exemplified by particular human linguistic
phenomena. The particular processing mechanisms involved are not, however,
intended to reflect the implementations of language processing in the human
brain. In contrast, ECG’s language comprehension model is specifically designed
to be cognitively plausible: not only does it fulfill the basic task of identifying
constructions instantiated by an utterance and producing the corresponding in-
terpretations, but it does so in a way that reflects the robust, incremental and
best-fit nature of human language processing. It thus exploits many efficiencies
that come from psycholinguistic evidence about online sentence processing.

Recent work by Wellens (this volume) explores how usage-based networks of
FCG constructions can be used to facilitate processing. Such work takes a step
in the direction of cognitively motivated processing. Heuristics used to guide
search during language processing may also capture some cognitively motivated
factors, but thus far little work has been done to fully exploit the potential for
learning from the constraints of human language processing in FCG.

7 Discussion and Outlook

The preceding sections describe two computational formalisms that implement
ideas from construction-based approaches to grammar. Relative to the range of
approaches in the literature, the similarities between the two formalisms and
their associated research frameworks far outnumber their differences. Both in-
clude notational means of expressing constructional mappings between form and
meaning, and both provide the basic representational toolkit for representing
categories, agreement and constituent structure.

In addition to these theoretically inspired commitments, the two frameworks
also share many methodological assumptions. Both formalisms aim to build
working systems that not only describe but in fact instantiate the structures
and processes proposed. Unlike many other approaches, they do not stop at de-
scribing linguistic knowledge in formal notation but rather offer models of how
they are actually used in communication. Processing considerations have thus
shaped both formalisms.

The many shared qualities discussed in the preceding sections might be seen
as independent requirements for any computational construction grammar for-
malism. Their differences are perhaps even more revealing of the specific issues

28 N. Chang, J. De Beule and V. Micelli

that computational implementations of construction-based grammar must face;
we summarize some of these below.

7.1 Freedom of expression

Perhaps the main recurring theme in this comparison has involved the rela-
tively restricted nature of ECG as compared to FCG: in general, ECG allows a
more restricted set of notational possibilities, as exemplified by its inclusion of
a schema formalism for expressing constructional form and meaning; its limited
set of expressible constraints; its stronger assumptions about (some) structural
parallels between the form and meaning domains; and the relative monotonicity
of the internal structures built up during processing.

By contrast, FCG has been designed to be as open-ended as possible, al-
lowing grammar-writers (and, not coincidentally, evolving agents) a free hand
in exploring different styles of representation and strategies for achieving suc-
cessful communication. This freedom is apparent not only in the broad array
of representational devices allowed in form and meaning, but also in the choice
of syntactic and semantic categories; the flexible independence of units in the
form and meaning domains; and the possibility of fundamental alterations of
constituent structure allowed during processing.

These fundamental differences beg the question: how much freedom of expres-
sion is enough, and can you have too much? These questions must, of course,
be posed relative to the kinds of phenomena the respective formalisms are in-
tended to account for. While ECG is a simpler formalism, it has thus far proven
sufficiently expressive for its purposes—to wit, capturing linguistic insights, ac-
counting for psycholinguistic evidence, and being learnable in a developmentally
plausible way. It has not, of course, been deployed in the context of language
evolution experiments, so it is as yet unclear whether its restricted set of possibil-
ities would give rise to the same unbounded range of communicative creativity,
or allow the degree of representational fluidity, fostered by FCG. On the other
hand, to the extent that FCG has interest in the specific questions of human
communication, it would be worthwhile to find concrete, realistic cases in natu-
ral language that demand the amount of freedom and corresponding complexity
afforded by FCG.

7.2 Structure and process

A related issue concerns the directness of the connection between the structures
appearing in the formalism and the particular procedures employed during pro-
cessing. The structure of ECG definitions specifies constraints on the function
of processing, but it does not specify precisely how the analyzer proceeds. This
affords it a certain amount of stability across particular implementations of pro-
cessing. The same structures are also intended to be useful for both language
comprehension and language production, though a concrete implementation of
the latter will be necessary before this idea can be explored and validated.

Computational Construction Grammar 29

FCG constructions are not only useful in both language production and com-
prehension, but their internal structure also reflects some more specific claims
FCG makes about the relation between those two processes. In particular, the
ways in which different kinds of constraints are expressed (e.g., whether used
for matching or merging) correspond directly to the (symmetric) ways in which
they are used in these both processing modes.

These differences raise the question of whether and how directly the declar-
ative constraints relevant to each construction can be abstracted from processes
of use. A related question is how and whether such construction content must
change in order to satisfy the constraints of both kinds of processing. Perhaps
FCG’s experience in this area could lead to predictions about how these ques-
tions would be answered for ECG.

7.3 Benefits and drawbacks of inheritance

The organization of FCG and ECG grammars reflects a major representational
difference between the two formalisms. ECG makes explicit use of constructional
and schematic inheritance relationships, as expressed by type lattices. Such rela-
tions capture various linguistic generalizations and naturally lead to more concise
and coherent grammars. Not coincidentally, they are also more reminiscent of
the kinds of linguistic structures typically proposed by cognitive linguists (and
hence perhaps easier for them to understand), and exploit object-oriented design
principles from computer science.

FCG grammars have mechanisms for achieving some of the effects of inher-
itance, such as the templates to notate shared structure. Some FCG grammars
also employ frame-based ontologies that are comparable to the schema hierar-
chies of ECG (see for instance [10]). And, as mentioned, some relations implicit
from the use and interaction of constructions during processing may be captured
in constructional dependency networks, thus making constructional relations a
directly usage-based matter. On the whole, however, FCG has not yet employed
explicit notions of inheritance.

As noted earlier, this difference is consistent with FCG’s emphasis on the in-
dependence of constructions, and the need for making small, local changes: it is
relatively easy to change the flow of processing by modifying existing construc-
tions or by adding new constructions to the constructicon (though it may be
difficult to predict their consequences). By contrast, in grammars like ECG that
employ extensive inheritance relations, small changes may affect a large number
of constructions, necessitating more complicated measures for maintaining con-
sistency or re-initializing to reflect updates. The effects of these differences on
processing depend, of course, on particular implementational choices, and how
much change and fluidity is necessary. The arena of language learning, though not
discussed in the current chapter, may offer the best domain for exploring these
questions: both formalisms have associated models of learning, though ECG’s is
developmental while FCG’s is evolutionary; the parallels and differences between
these endeavors should reward further investigation.

30 N. Chang, J. De Beule and V. Micelli

7.4 Different formalisms for different goals

Many of the differences between FCG and ECG reflect their respective back-
grounds and priorities. ECG was intended from the start as a theory of hu-
man cognition, embracing the foundational ideas of cognitive linguistics. Its goal
has been to capture patterns of human categorization and processing, while ex-
pressing linguistic and conceptual generalizations. The roots of FCG in artifical
language evolution have given it a more dynamic and fluid view of linguistic rep-
resentations, which crucially requires a certain amount of independence among
representations. The developmental path of each formalism reflects these biases
and accounts for many of the phenomena we have illustrated here.

But stepping back, it should be clear that these different approaches provide
complementary perspectives on the same underlying phenomena of embodied,
situated communication. Though they ask different versions of the question—
emphasizing, respectively, the constraints imposed by human cognition, versus
the freedom to evolve diverse communicative strategies—they nevertheless both
provide important ways of framing any complete approach to modeling language
structure, use and acquisition. Perhaps most significantly, the fact that both for-
malisms have concrete implementations of their various structures and processes
gives them an additional dimension of considerations not typically available for
non-implemented grammatical theories and permits a much more nuanced com-
parison of approaches than would otherwise be possible. Only when such com-
putationally precise descriptions are available can issues like those raised here
be recognized and explored across the broader field of constructional approaches
to grammar.

Bibliography

[1] Bleys, J., Stadler, K., De Beule, J.: Search in linguistic processing. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[2] Bryant, J.: Best-Fit Constructional Analysis. Ph.D. thesis, Computer Sci-
ence Division, University of California at Berkeley (2008)

[3] Chang, N.: Constructing grammar: A computational model of the emer-
gence of early constructions. Ph.D. thesis, Computer Science Division, Uni-
versity of California at Berkeley (2008)

[4] Ciortuz, L., Saveluc, V.: Fluid Construction Grammar and feature con-
straints logics. In: Steels, L. (ed.) Computational Issues in Fluid Construc-
tion Grammar. Springer Verlag, Berlin (2012)

[5] Dodge, E.: Conceptual and Constructional Composition. Ph.D. thesis, Uni-
versity of California at Berkeley (2010)

[6] Feldman, J.A.: From Molecule to Metaphor: A Neural Theory of Language.
MIT Press, Cambridge, MA (2006)

[7] Goldberg, A.E.: Constructions: A Construction Grammar Approach to Ar-
gument Structure. University of Chicago Press (1995)

Computational Construction Grammar 31

[8] Langacker, R.W.: Foundations of Cognitive Grammar, Vol. 1. Stanford Uni-
versity Press (1987)

[9] Manning, C., Carpenter, B.: Probabilistic parsing using left-corner language
models. In: Proceedings of the 5th International Workshop on Parsing Tech-
nology (1997)

[10] Micelli, V.: Field topology and information structure: A case study for Ger-
man constituent order. In: Steels, L. (ed.) Computational Issues in Fluid
Construction Grammar. Springer Verlag, Berlin (2012)

[11] Mok, E.: Contextual Bootstrapping for Grammar Learning. Ph.D. thesis,
Computer Science Division, University of California at Berkeley (2008)

[12] Mok, E., Bryant, J., Feldman, J.: Scaling understanding up to mental
spaces. In: Proceedings of the 2nd International Workshop on Scalable Nat-
ural Language Understanding (ScaNaLU-2004). Boston, MA (2004)

[13] Schneider, N.: Computational cognitive morphosemantics: modeling mor-
phological compositionality in hebrew verbs with embodied construction
grammar. In: Proceedings of the Berkeley Linguistics Society (2010)

[14] Spranger, M., Loetzsch, M.: Syntactic indeterminacy and semantic ambigu-
ity: A case study for German spatial phrases. In: Steels, L. (ed.) Design Pat-
terns in Fluid Construction Grammar. John Benjamins, Amsterdam (2011)

[15] Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

[16] Steels, L.: A first encounter with Fluid Construction Grammar. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[17] van Trijp, R.: Feature matrices and agreement: A case study for German
case. In: Steels, L. (ed.) Design Patterns in Fluid Construction Grammar.
John Benjamins, Amsterdam (2011)

