
Notice

This paper is the author’s draft and has now been published officially as:

van Trijp, Remi (2012). A Reflective Architecture for Robust Language Process-
ing and Learning. In Luc Steels (Ed.), Computational Issues in Fluid Construc-
tion Grammar, 51–74. Berlin: Springer.

BibTeX:

@incollection{vantrijp2012reflective,
Author = {van Trijp, Remi},
Title = {A Reflective Architecture for Robust Language Processing and Learning},
Pages = {51--74},
Editor = {Steels, Luc},
Booktitle = {Computational Issues in {Fluid Construction Grammar}},
Publisher = {Springer},
Series = {Lecture Notes in Computer Science},
Volume = {7249},
Address = {Berlin},
Year = {2012}}

A Reflective Architecture for Robust Language
Processing and Learning

Remi van Trijp

Sony Computer Science Laboratory Paris, France

Abstract. Becoming a proficient speaker of a language requires more
than just learning a set of words and grammar rules, it also implies mas-
tering the ways in which speakers of that language typically innovate:
stretching the meaning of words, introducing new grammatical construc-
tions, introducing a new category, and so on. This paper demonstrates
that such meta-knowledge can be represented and applied by reusing
similar representations and processing techniques as needed for routine
linguistic processing, which makes it possible that language processing
makes use of computational reflection.

1 Introduction

When looking at natural language, two striking observations immediately jump
to the mind. First, there is an extraordinary amount of diversity among the
world’s languages [10] and ‘almost every newly described language presents us
with some “crazy” new category that hardly fits existing taxonomies’ [9, p. 119].
Secondly, languages are not static homogeneous entities, but rather complex
adaptive systems [24] that dynamically change over time and in which new forms
are forever emerging [11]. These observations pose strong requirements on lin-
guistic formalisms, which need to support an enormous amount of variety while
at the same time coping with the open-ended nature of language [33].

Both requirements may seem overwhelming for anyone who wants to develop
operational explanations for language, but two formalisms within the cognitive
linguistics tradition have nevertheless accepted the challenge: Fluid Construc-
tion Grammar (FCG; for handling parsing and production; see the remainder
of this volume and [26]) and Incremental Recruitment Language (IRL; a con-
straint language that has been proposed for operationalizing embodied cognitive
semantics [20]). Both IRL and FCG have the necessary expressivity for capturing
the myriad of conceptual and grammatical structures of language. FCG is based
on feature structures and matching and merging (i.e. unification) [6, 18, 28, 32],
whereas IRL is based on constraints and constraint propagation.1

1 In order to fully appreciate the technical details of this paper, the reader is expected
to have a firm grasp of the FCG-system and a basic understanding of IRL. Inter-
ested readers are also advised to first check [33] for learning about how problems
concerning robustness and fluidity are typically handled in FCG, and [4, 15] for how
that approach is implemented.

A Reflective Architecture 3

Both FCG and IRL are embedded in a double-layered meta-level architecture
for handling unforeseen problems and inventing novel solutions [4, 33]. This
meta-level architecture allows the implementation of computational reflection
[19], which is commonly defined as “the activity performed by a system when
doing computation about (and by that possibly affecting) its own computation”
[16, p. 21]. The architecture is illustrated in Figure 1. On the one hand, there
is a routine layer that handles habitual processing. On top of that, a meta-
layer tries to detect and solve problems that may occur in routine processing
through diagnostics and repairs (also called meta-layer operators). For instance,
a diagnostic may detect that the listener encountered an unknown word, while
a repair can ask the language system to perform a top-down prediction on what
kind of word it is and what its meaning might be (see [4, 33]; and the remainder
of this paper for more concrete examples). Once a repair is made, computation
resumes at the routine-layer.

!"!"

routine processing

diagnostic

problem repair

diagnostic diagnostic diagnostic

problem

repair meta-layer processing

Fig. 1. FCG and IRL feature a double-layered meta-level architecture. Besides a layer
for routine processing, a meta-layer diagnoses and repairs problems that may occur in
the routine layer [4].

Recent studies on the evolution of language [29, 30] have identified numer-
ous meta-layer operators that operationalize open-ended language processing for
specific domains such as agreement [3], tense-aspect [7], event structure [34, 36],
space [14, 21], and quantifiers [17]. However, most operationalizations imple-
ment the functions of the diagnostics and repairs in LISP code, so the language
processing system is only reflective in a weak sense. Figure 2 shows a typical
example of this approach in pseudo-code. The diagnostic shown in the Figure
tries to detect unknown words by looking for unprocessed strings in each last
search node (or ‘leaf’) of linguistic processing. If the set of those strings contains
exactly one word, the diagnostic reports an unknown-word problem.

4 R. van Trijp

diagnostic (detect-unknown-word)

when SEARCH-NODE in PARSING is a LEAF
then get the UNPROCESSED-STRINGS from the SEARCH-NODE

when the UNPROCESSED-STRINGS contain a SINGLE-WORD
then report UNKNOWN-WORD problem

Fig. 2. Most diagnostics and repairs for IRL and FCG are implemented directly as
computational functions, whereas full reflection requires that IRL and FCG are their
own meta-language.

This paper demonstrates that the same representation and application ma-
chinery now used at the routine language processing layer can also be used for
the meta-layer, which makes the whole system reflective in a strong sense. By
doing so, this paper paves the way towards experiments in which novel language
strategies emerge and become culturally shared. More specifically, this paper
proposes the following approach:

1. Diagnostics can be represented as feature structures, which can be processed
by the FCG-interpreter. Problems are detected by matching these feature
structures against other feature structures.

2. Repairs can be represented as constraint networks, which can be configured,
executed and chunked by IRL.

3. Diagnostics and repairs that exclusively operate on the linguistic level can
be associated to each other in the form of coupled feature structures and thus
become part of the linguistic inventory in their own right.

I use the term language strategy for a particular set of diagnostics and repairs
(see [31], for a more complete definition of a language strategy). Language strate-
gies are processed in the meta-layer and allow a language user to acquire and
expand a language system, which are the concrete choices made in a language
for producing and comprehending utterances, such as the English word-order
system. Language systems are processed in the routine layer.

2 Diagnostics Based on Matching

This section demonstrates through a series of examples how feature structures,
which are used for representing linguistic knowledge in FCG [22], can represent
diagnostics. When they are able to match with a transient structure they detect
a specific problem.

A Reflective Architecture 5

2.1 A First Example: Detecting an Unknown Word

Let’s start with one of the most common problems in deep language processing:
unknown words [1]. The key to diagnosing this problem through the FCG ma-
chinery (rather than by using a tailored LISP function) is to understand how
routine processing handles familiar words. As explained in more detail by [27],
FCG processing first involves a transient structure, which is a temporary data
structure that contains all the information of the utterance that a speaker is
producing, or that a listener is parsing. The transient structure consists of a
semantic and a syntactic pole. Both poles comprise a set of units, which have
feature structures associated with them. The following transient structure repre-
sents the initial structure of the utterance the snark at the beginning of a parsing
task:

Example 1.

((top-unit))
<-->
((top-unit

(form ((string the-unit "the")
(string snark-unit "snark")
(meets the-unit snark-unit)))))

As can be seen, both the semantic pole (above the double arrow symbol) and
the syntactic pole have a unit called top-unit. The top-unit on the semantic pole
is still empty because we’re at the beginning of a parsing task hence the listener
has not analyzed any of the words yet. The top-unit of the right pole has a form
feature, whose value contains two words and an ordering constraint (meets)
between the words. During parsing, the FCG-interpreter then tries to apply
linguistic constructions to the transient structure and, by doing so, modifying
it. For example, the following lexical entry applies for the word the:

Example 2.

((?top-unit
(tag ?meaning (meaning (== (unique-entity ?entity))))
(footprints (==0 the-lex)))

((J ?the-unit ?top-unit)
?meaning
(args (?entity))
(footprints (the-lex lex))))

<-->
((?top-unit

(tag ?form (form (== (string ?the-unit "the"))))
(footprints (==0 the-lex)))

((J ?the-unit ?top-unit)
?form
(footprints (the-lex lex))))

6 R. van Trijp

The above lexical construction is kept simple for illustration purposes. In
parsing, all it does is look for any unit whose form feature contains the string
“the” in its value. If such a unit is found, the construction builds a new unit for
the article and moves the form to this new unit. The construction also leaves a
footprint that prevents it from applying a second time. On the semantic pole, the
construction builds a corresponding unit for the article and it adds the article’s
meaning to this new unit. So when applying the lexical construction of example
2 to the transient structure in example 1, the transient structure is modified into
the following structure:

Example 3.

((top-unit
(sem-subunits (the-unit)))

(the-unit
(meaning ((unique-entity ?entity)))
(args (?entity))
(footprints (the-lex lex))))

<-->
((top-unit

(syn-subunits (the-unit))
(form ((string snark-unit "snark")

(meets the-unit snark-unit))))
(the-unit
(form ((string the-unit "the")))
(footprints (the-lex lex))))

It is common design practice in FCG to consider the top-unit as a buffer
that temporarily holds all data concerning meaning (on the semantic pole) or
form (on the syntactic pole) until they are moved into their proper units by
lexical constructions. If all lexical constructions abide by this design rule, all
meanings and strings that are left in the top-unit after all constructions have
been tried can be considered as unprocessed and therefore problematic. For
detecting whether any unknown words are left, we can thus simply define a
meta-level feature structure that matches on any string in the top-unit:

Example 4.
diagnostic (string)

((?top-unit
(form (== (string ?any-unit ?any-string)))
(footprints (==0 lex))))

This diagnostic looks exactly like the ‘conditional’ features of a lexical con-
struction (i.e. units that need to be ‘matched’ before the other features are
merged by the FCG-interpreter), except for the fact that there is a variable
?any-string instead of an actual string, and that the feature structure cannot
trigger if the footprint lex has been left in the unit by a lexical construction.

A Reflective Architecture 7

Assume now that the FCG-system did not have a lexical construction for
the word snark, which is likely because it is an imaginary word invented by
Lewis Carroll for his 1876 poem The Hunting of the Snark, so routine processing
gets stuck at the transient structure of example 3. The FCG-interpreter can now
match the meta-level feature structure of example 4 with the syntactic pole of
that transient structure, which yields the following bindings:

((?any-string . "snark") (?any-unit . snark-unit) (?top-unit . top-unit))

In other words, the meta-level feature structure matches with the top-unit
and finds the unknown string snark. Here, there is only one unknown word,
but if there would be multiple unknown strings, matching would yield multiple
hypotheses. This example, which is kept simple for illustration purposes, achieves
the same result as the diagnostic that was illustrated in Figure 2.

By exploiting the same feature structure representation as FCG uses for tran-
sient structures and linguistic constructions, the FCG-interpreter can be reused
without resorting to tailor-made functions. Moreover, the diagnostic explicitly
uses the design pattern shared by all lexical constructions, namely that strings
and meanings are taken from the buffer-like top-unit and put into their own
unit, whereas the tailored function keeps this information implicit.

2.2 Internal Agreement

A common feature of language is ‘internal agreement’, which involves two or
more linguistic units that share semantic or syntactic features such as gender or
number [3]. For example, in the French noun phrase la femme (‘the woman’),
the singular-feminine definite article la is used in agreement with the gender and
number of femme, as opposed to the singular-masculine article le as in le garçon
(‘the boy’).

Assume now a grammar of French that uses phrasal constructions for han-
dling agreement between an adjacent determiner and noun, using the design
pattern for phrasal constructions as proposed by [25]. The schema in Figure 3
illustrates how a DetNP-construction modifies the transient structure on the left
to the resulting transient structure on the right: the construction takes the units
for the determiner and the noun and groups them together as subunits of a new
NP-unit, which has the same number and gender features as its two subunits.

Just like with lexical constructions, we can exploit the design pattern cap-
tured in phrasal constructions for detecting problems. The diagnostic in example
5 detects whether the DetNP-construction applied successfully or not. It looks
for any unit that contains at least two subunits, and which does not contain the
feature-value pair (phrase-type nominal-phrase) (ensuring that the phrasal
construction did not apply on this unit). The two specified subunits should ‘meet’
each other (i.e. be adjacent), and they should be a determiner and a noun. Both
the determiner and the noun have a number and gender feature, but their values
are unspecified through unique variables for each unit, which allows the actual
values to differ from each other.

8 R. van Trijp

top-unit

la-unit
(syn-cat
 (syn-function determiner)
 (number SG)
 (gender F))

femme-unit
(syn-cat
 (syn-function nominal)
 (number SG)
 (gender F))

top-unit

la-unit
(syn-cat
 (syn-function determiner)
 (number SG)
 (gender F))

femme-unit
(syn-cat
 (syn-function nominal)
 (number SG)
 (gender F))

DetNP-unit
(syn-cat
 (phrase-type nominal-phrase)
 (number SG)
 (gender F))

application of
DetNP-construction

Fig. 3. The DetNP-construction groups a determiner- and noun-unit together as sub-
units of a phrasal unit.

Example 5.
diagnostic (internal-agreement)

((?top-unit
(syn-subunits (== ?determiner-unit ?noun-unit))
(form (== (meets ?determiner-unit ?noun-unit)))
(syn-cat (==0 (phrase-type nominal-phrase))))

(?determiner-unit
(syn-cat
(==1 (gender ?determiner-gender)

(number ?determiner-number)
(syn-function determiner))))

(?noun-unit
(syn-cat
(==1 (gender ?noun-gender)

(number ?noun-number)
(syn-function nominal)))))

Suppose the FCG-interpreter has to parse the ungrammatical utterance *le
femme. Matching the meta-level feature structure would yield the following bind-
ings for those unique variables:

((?determiner-number . SG) (?determiner-gender . M)
(?noun-number . SG) (?noun-gender . F))

A Reflective Architecture 9

From these bindings, we can infer that there is a problem with the gender
feature, because there are two different values for both units: masculine and
feminine. The number feature, on the other hand, is singular for both units
because the variables ?determiner-number and ?noun-number are both bound
to the same value. Similarly, the diagnostic can detect a problem of number
(but not of gender) if it would be matched against a feature structure for the
utterance *la femmes:

((?determiner-number . SG) (?determiner-gender . F)
(?noun-number . PL) (?noun-gender . F))

Again, the diagnostic in example 5 does not require a special function, but
simply reuses the FCG-interpreter for discovering problems and providing the
FCG-system with details about where the problem is found. The diagnostic is,
however, specific to a language such as French that has internal agreement of
gender and number, but it would be almost useless for English, which does not
mark gender agreement between an article and the adjacent noun, and which
also does not mark number agreement between a definite article and a noun.

2.3 Word Order

Another widespread language strategy is based on using word order for marking
various kinds of grammatical or pragmatic functions, but there is a wide variety
in which word order constraints are applied by particular languages. For exam-
ple, Dutch is fairly free in its word order constraints but it is a so-called V2
(verb second) language, which means that (with the exception of certain con-
structions), the inflected verbal unit of a Dutch utterance has to be in second
position in the main clause. For example, a Dutch speaker would translate ‘Yes-
terday, I went walking’ as Gisteren ging ik wandelen, literally ‘yesterday went I
walk’. The following meta-level feature structure is able to diagnose violations
of the Dutch V2-constraint:

Example 6.
diagnostic (V2-constraint)

((?top-unit
(syn-subunits
(== ?unit-a ?unit-b ?verbal-unit))
(form (== (meets ?unit-a ?unit-b)

(meets ?unit-b ?verbal-unit))))
(?verbal-unit

(syn-cat (==1 (syn-function verbal)
(inflected? +)))))

10 R. van Trijp

The diagnostic uses two adjacency constraints to check whether there is any
‘illegal’ unit that precedes the verbal unit, which itself is identified through its
syntactic function and the inflection constraint. Thus if an English speaker who
learns Dutch would say *Gisteren ik ging wandelen, the diagnostic would find
matching variables for ?unit-a (the adverbial phrase gisteren ‘yesterday’) and
?unit-b (the subject ik ‘I’), which means that at least one of these two units is
in the wrong position.

2.4 Unexpressed Meanings

Diagnostics can not only be of lexical or morphosyntactic nature, but also target
semantic properties. In dialogues it often happens that a language user cannot
remember a particular word for the meaning he wishes to express, especially
when speaking in a foreign language. This problem is equivalent to detecting
unknown words, hence we can use a similar solution on the meaning side. The
meta-level feature structure of example 7 triggers on all meanings that have been
left unprocessed by lexical constructions.

Example 7.
diagnostic (meaning)

((?top-unit
(meaning (== (?predicate . ?args)))
(footprints (==0 lex))))

Suppose that FCG-processing got stuck at a transient structure that includes
the following top-unit, which contains an unprocessed temporal meaning that
states that one event happened before another one:

(top-unit
(meaning ((before ev-1 ev-2))))

Matching the meta-level structure yields the following bindings:

((?predicate . before) (?args ev-1 ev-2) (?top-unit . top-unit))

The diagnostic finds out that the unexpressed meaning predicate (if one uses a
predicate calculus for handling meaning) is before. The diagnostic also uses a
dot before the variable ?args, which is a Common Lisp notation that corresponds
to ‘the rest of the list’, so ?args is bound to the remainder of the meaning
element (ev-1 ev-2). For each unexpressed meaning predicate, the diagnostic
thus returns a binding for the predicate and its arguments.

A Reflective Architecture 11

2.5 Valence

A major challenge for linguistic formalisms is the distribution of verbs (i.e. which
argument structures are compatible with which verbs). Usually, a verbal lexical
entry contains a valence feature that states which semantic (and syntactic) roles
the verb can assign to its arguments. Problems, however, arise when speakers
wish to override those constraints, as when for instance using the intransitive
verb sneeze in a Caused-Motion frame as in Pat sneezed the napkin off the table
[8, p. 3]. Assume the following meaning and semantic valence for the verb sneeze:

(meaning
(== (sneeze ?ev)

(sneezer ?ev ?sneezer)))
(sem-cat
(==1 (sem-valence

(==1 (agent ?ev ?sneezer)))))

Using a predicate calculus for meaning, the verb contains one predicate for the
event itself and one predicate for the participant who’s sneezing (the sneezer).
The semantic valence of the verb states that the sneezer can be categorized
in terms of the semantic role agent by repeating the variable ?sneezer for its
argument, thereby making the verb compatible with the intransitive construction
(see [35] for a detailed discussion of valence and argument structure constructions
in FCG).

The Caused-Motion construction, however, requires not only an Agent but
also a Patient and a Direction, as found in the valence of verbs that typically
express caused motion such as push and pull. There is thus a mismatch between
the valence of sneeze and the requirements of the Caused-Motion construction,
which means that the argument structure construction will not be triggered
during routine processing.

According to Goldberg [8], this problem can be solved through coercion.
Goldberg argues that the Caused-Motion construction only specifies that the
Agent is obligatory and that the other roles can be added by the construction
itself on the condition that there are no conflicts with the semantics of the verb.
If we want to operationalize this hypothesis, an adequate diagnostic thus needs
to figure out the following two things. First, it has to detect that the Caused-
Motion construction failed to apply, and if so, it has to check whether the verb
can be coerced into the Caused-Motion frame if necessary. The meta-level feature
structure shown in example 8 achieves both goals.

12 R. van Trijp

Example 8.
diagnostic (Caused-Motion)

((?top-unit
(sem-subunits
(== ?agent-unit ?verbal-unit ?patient-unit

?direction-unit))
(meaning
(== (cause-move ?ev) (causer ?ev ?agent)

(moved ?ev ?patient)
(direction ?ev ?direction)))

(footprints (==0 arg-cxn)))
(?verbal-unit
(sem-cat (==1 (sem-valence

(==1 (agent ?ev ?agent)))))
(args (?ev)))

(?agent-unit
(args (?agent)))

(?patient-unit
(args (?patient)))

(?direction-unit
(args (?direction))))

The diagnostic in example 8 matches if there is a unit whose meaning feature
contains a Caused-Motion frame. The footprints ensure that no argument-
structure construction has applied on this unit. The diagnostic also verifies
whether all necessary units are present, and whether the semantic valence of
the verb contains at least the obligatory Agent-role. When matched against a
transient structure that contains the verb sneeze, the diagnostic would thus im-
mediately be capable of linking the sneezer-role to the causer-role in the Caused-
Motion frame through the variable ?agent.

3 Diagnostics Based on Merging

The examples in the previous sections have all used the matching facility of
the FCG-interpreter. A second way in which meta-level feature structures can
be exploited is to use merging. The merge-operation is more permissive than
matching and hence should only be used as a test for conflicts. In this usage, the
meta-level feature structure does not represent a particular problem, but rather
captures certain ‘felicity conditions’ of a language. This means that a failure in
merging it with the transient structure reveals a violation of the constraints of
that language. Let’s take the example of internal agreement in French again. The
following meta-level feature structure checks whether the number and gender
features of a determiner and an adjacent noun agree with each other when it is
merged with a transient structure:

A Reflective Architecture 13

Example 9.
diagnostic (internal-agreement-2)

((?top-unit
(syn-subunits (== ?determiner-unit ?noun-unit))
(form (== (meets ?determiner-unit ?noun-unit))))

(?determiner-unit
(syn-cat
(==1 (gender ?gender)

(number ?number)
(syn-function determiner))))

(?noun-unit
(syn-cat
(==1 (gender ?gender)

(number ?number)
(syn-function nominal)))))

The meta-level feature structure uses the same variables ?gender and ?number
for both units, indicating that the determiner and the noun need to have the
same value for both features. Merging the meta-level feature structure with the
transient structure of la femme (‘the woman’) would thus succeed because both
forms are feminine-singular. However, merging would fail for utterances such as
*le femme because the two words have different gender values.

However, using FCG’s merging operation for diagnosing problems is less pow-
erful than using the matcher because there is less feedback: merging simply fails
without providing more information about what caused the failure. So when the
diagnostic of example 9 reports a problem, it cannot say whether the problem
is caused by mismatches in gender, number or both.

4 Exploiting Constraint Networks for Repairs

As explained in more detail by [4], repairs are powerful operations that try
to solve the problems detected by diagnostics. Repairs are able to modify the
inventory used in routine processing, and to restart or even repurpose a parsing
or production task. As is the case for diagnostics, most currently implemented
repairs for FCG are specific functions that look as the repair shown in Figure 4.

repair (add-meta-level-cxn problem parsing-task)

If there is an UNKNOWN-WORD in PROBLEM
then add a META-LEVEL CONSTRUCTION of UNKNOWN-WORD to GRAMMAR

and restart PARSING-TASK
else return FAILURE

Fig. 4. Most current FCG repairs are implemented as specific LISP functions.

14 R. van Trijp

The repair handles unknown words by inserting a meta-level construction in
the linguistic inventory. Interested readers are kindly referred to [33] to learn
more about how the solution works. Roughly speaking, the meta-level construc-
tion creates a new unit for the unknown word and makes it compatible with
any semantic and syntactic specification, which may trigger the application of
other constructions that were previously blocked. Returning to our example of
the snark, for instance, a DeterminerNominal construction can now treat snark
as a noun because it is immediately preceded by a determiner. FCG can thus
overcome the problem and continue parsing until a final transient structure is
found that passes all the ‘goal tests’ that decide on the adequacy of a parse result
[5].

Writing a specific function for each repair is useful for fast prototyping, but
soon becomes problematic. First, there is no uniform and coherent way of rep-
resenting and processing repairs. As a result, it largely depends on the grammar
engineer’s appreciation of particular problems whether the repair is adequate or
not. Secondly, there is no ‘safe’ way of testing the consequences of a repair: re-
pairs have to ‘commit’ their changes to the linguistic inventory and then restart
a process before any hidden effects may pop up. Needless to say, when complex
problems need to be solved, writing adequate repairs soon involves a lot of trial
and error, even for experienced grammar engineers.

This paper proposes that the implementation of repairs should be treated as
constraint satisfaction problems, which allows the grammar engineer to define
constraints that need to be satisfied before a repair is allowed to commit its
changes to the inventory. For this purpose, repairs can be formulated as con-
straint networks using IRL, a constraint language that has been proposed for
handling conceptualization and interpretation [20], and which can be considered
as FCG’s sister formalism. The next subsection shows a first example of an ‘IRL
repair’. The subsequent section then goes a step further and shows the full power
of IRL for implementing repairs.

4.1 A First Example: Repairing an Unknown Word

Assume that a diagnostic has detected the unknown word snark in the utterance
the snark. We now need to define a network of constraints that performs the same
operations as the repair function in Figure 4 and that first tests the solution
instead of immediately committing any changes and restarting the parsing task.
Every IRL repair network consists of the following elements:

– An object store, which contains ‘linguistic types’ such as transient structures,
constructions, meanings and strings. Specific instantiations of each type are
called ‘linguistic instances’.

– A component store, which contains ‘linguistic operators’, which are the build-
ing blocks of each network. These operators perform specific operations on
linguistic instances, such as applying a construction, fetching the inventory
of constructions, and so on.

A Reflective Architecture 15

(bind string ?word snark)

(get-construction-inventory ?inventory)

(apply-construction ?ts-2 ?ts-1 ?cxn ?direction)

(build-meta-level-construction ?cxn ?word)

(FCG-parse ?ts-3 ?ts-2 ?inventory)

(get-latest-transient-structure ?ts-1)

(get-process-direction ?direction)

Fig. 5. A possible IRL repair network for handling unknown words. This first example
does not yet exploit the full power of IRL and uses a sequential order for the execution
of linguistic operations (with precedence relations indicated by the arrows).

A possible repair network is shown in Figure 5. Every node in a repair net-
work evokes a specific linguistic operation, represented by the name of the op-
erator and a list of its arguments, for instance (get-construction-inventory
?inventory). The arguments are variables (indicated by a question mark) that
are or will be bound to a linguistic instance. Binding variables to a specific
linguistic instance of a certain type is done by the special operator bind. For ex-
ample, the operation (bind string ?word snark) binds the word snark (which
is of type string) to the variable ?word. Different operations in the network are
linked to each other through the variables. For example, the variable ?inventory
is shared by two operations. In its list notation, the network looks as follows:

((bind string ?word snark)
(get-construction-inventory ?inventory)
(get-latest-transient-structure ?ts-1)
(get-process-direction ?direction)
(build-meta-level-construction ?cxn ?word)
(apply-construction ?ts-2 ?ts-1 ?cxn ?direction)
(FCG-parse ?ts-3 ?ts-2 ?inventory))

An explanation of how each operator can be implemented in IRL can be
found in [20]. When described in words, the network performs the following
operations:

1. Take the unknown word snark of type string (provided by a diagnostic)
and bind it to the variable ?word.

2. Get the construction inventory from the parsing task in which the problem
was detected and bind it to the variable ?inventory.

16 R. van Trijp

3. Get the latest transient structure from the parsing task in which the problem
was detected and bind it to the variable ?ts-1 (transient structure 1).

4. Get the processing direction (parsing or production) from the task in which
the problem was detected and bind it to the variable ?direction.

5. Build a meta-level construction using the linguistic instance bound to the
variable ?word. Bind the meta-level construction to the variable ?cxn (con-
struction).

6. Take the linguistic instances bound to the variables ?cxn (of type ‘con-
struction’), ?ts-1 (of type ‘transient structure’) and ?direction (of type
‘process-direction’). Apply the construction to the transient structure to ob-
tain a new transient structure. Bind this new transient structure to the
variable ?ts-2.

7. Take the linguistic instances bound to ?inventory (of type ‘construction-
inventory’) and ?ts-2 (of type ‘transient structure’). Perform a parsing task
with these linguistic instances in order to obtain a new transient structure.
Bind the final transient structure to ?ts-3.

Particular constraints can be defined for each operation. For example, the
operation FCG-parse only succeeds if the final transient structure passes all the
goal tests that the grammar engineer defined for obtaining adequate results.
Likewise, applying a single construction is only successful if (a) the construc-
tion indeed applies on a particular transient structure, and (b) if the resulting
transient structure passes all the ‘node tests’ defined in the FCG-system [5].

4.2 Dataflow Repairs

The example of the previous section showed how IRL can provide the grammar
engineer with a safer way of testing the adequacy of repairs. However, the ap-
plied IRL-network still featured a simple sequential control flow in which there
is a fixed order in which the network’s constraints are executed, which does
not necessarily warrant a constraint propagation approach. This section justifies
the use of IRL by showing how the formalism allows the operationalization of
dataflow repairs, in which information can propagate in any direction depending
on instance availability [23]. The main advantage of dataflow repairs is that they
can be used for both parsing and production at the same time.

Apply-construction. Using dataflow instead of control flow makes it possible
to develop more powerful linguistic operators. For instance, in a control flow
approach, the operator apply-construction (which takes four arguments: a
resulting transient structure, a source transient structure, a construction and
a process-direction; see Figure 4) requires three available instances (the source
transient structure, construction and direction) before it can return a new tran-
sient structure. In a dataflow approach, at least the scenarios listed in Table 1
become possible.

In principle, it is also possible to implement a scenario in which the operator
has the output transient structure and the construction as available instances in

A Reflective Architecture 17

Available instances Computation
- Resulting transient structure The operator can compute which construction
- Source transient structure needs to be applied (and in which direction) in

order to go from the source to the resulting
transient structure.

- Resulting transient structure The operator can compute which construction
- Source transient structure needs to be applied in order to go from the source
- Direction to the resulting transient structure.
- Resulting transient structure The operator can compute the direction of
- Source transient structure application.
- Construction
- Resulting transient structure The operator can perform a ‘sanity check’ to
- Source transient structure see whether application of the construction on
- Construction the source structure indeed leads to the resulting
- Direction structure.

Table 1. In a dataflow approach, the operator apply-construction can perform different
computations depending on the availability of linguistic instances.

order to compute what the source transient structure was. This scenario how-
ever requires the retroactive application of constructions, which is currently not
supported in FCG.

In sum, depending on the particular configuration of instance availability,
the operators can already perform various computations and pass the results to
other operators instead of waiting for other procedures to finish their work. IRL
keeps cycling through each operator until no more computation can be achieved.

Build-meta-level-construction. With the power of IRL’s dataflow approach comes
the possibility of anticipating different scenarios of instance availability depend-
ing on the task that the FCG-interpreter needs to perform. For example, when
building a meta-level construction for an unknown word during parsing, the
FCG-interpreter already has the form of the new construction at its disposal.
The same function, however, would also be useful for a problem in production in
which the FCG-interpreter has a novel meaning to express but no corresponding
form yet. A new ‘call pattern’ for the operator that allows the meaning and form
to be specified looks as follows:

(build-meta-level-construction ?cxn ?meaning ?word)

The operator now needs to be implemented in such a way that it can handle
at least the situations listed in Table 2. Now that the principle and power of
dataflow repairs are clear, it is time to change the IRL repair of Figure 5 into
a repair that can be applied in both parsing and production. Such a repair is
shown in Figure 6. The linking lines between operations in the figure do not have

18 R. van Trijp

Available instances Computation
- String (parsing) The operator assumes a meta-level meaning

and builds a meta-level construction. The
results are bound to the variables ?meaning and ?cxn.

- Meaning (production) The operator assumes a meta-level form
and creates a new construction. The results
are bound to the variables ?word and ?cxn.

- Meaning The operator builds a meta-level construction
- String and binds it to the variable ?cxn.

Table 2. Different scenarios of instance availability for the linguistic operator build-
meta-level-construction.

arrows anymore, which illustrates the dataflow approach. The bind operations
are shown in dark grey and italics to indicate that their availability depends on
whether FCG is producing or parsing an utterance.

Apart from the new call pattern for build-meta-level-construction, the
operator FCG-parse has been replaced by the more general operator FCG-apply.
As opposed to FCG-parse, this operator takes a fourth argument, which is the
direction of processing: from meaning to form, or from form to meaning. The
direction is provided by the operator get-process-direction, which fetches
the direction from the task that the FCG-interpreter is performing. In its list
notation, the network looks as follows (the bind operations are left out; these
have to be provided by the diagnostics):

((get-construction-inventory ?inventory)
(get-latest-transient-structure ?ts-1)
(get-process-direction ?direction)
(build-meta-level-construction ?cxn ?meaning ?word)
(apply-construction ?ts-2 ?ts-1 ?cxn ?direction)
(FCG-apply ?ts-3 ?ts-2 ?inventory ?direction))

5 Diagnostics and Repairs as Coupled Feature Structures

The previous two sections have shown how FCG and IRL can be exploited for
representing and processing meta-level operators. The approach can readily be
applied in the current formalisms without needing any extensions. One limitation
of the current implementation, however, is that the repair of a problem involves
a lot of (computational) red tape: first, a diagnostic needs to be implemented
that operates on certain predefined situations. If the diagnostic detects issues
in processing, it needs to instantiate a problem, which subsequently triggers
one or more repairs [4]. Using problems as ‘mediators’ between diagnostics and

A Reflective Architecture 19

(bind string ?word snark)

(get-construction-inventory ?inventory)

(apply-construction ?ts-2 ?ts-1 ?cxn)

(build-meta-layer-construction ?cxn ?meaning ?word)

(FCG-apply ?ts-3 ?ts-2 ?inventory ?direction)

(get-latest-transient-structure ?ts-1)

(bind meaning ?meaning new-prototype)

(get-process-direction ?direction)

Fig. 6. A dataflow repair. This IRL network implements the solution of a meta-level
construction for both parsing and production. The bind operations for meaning and
form are shown in grey italic because their availability depends on the direction of
processing.

repairs allows for a lot of flexibility, but it would often be much more efficient
to implement a ‘quick fix’ by directly coupling a repair to a diagnostic.

This section explores a way in which meta-level operators can be directly
associated to each other in the form of coupled feature structures, thereby repre-
senting them in the same way as transient structures and constructions. In the
remainder of this paper, I will use the term fix for the association of a diagnostic
and an IRL-repair, because they are meant to be efficient solutions that blend in
seamlessly with routine processing. All of the examples presented in this section
have been computationally implemented in a proof-of-concept fashion and are
therefore not (yet) part of the current FCG implementation.

5.1 Coupled Feature Structures

In FCG, both transient structures and constructions use the same feature struc-
ture representation, which is implemented in CLOS (Common Lisp Object Sys-
tem; see [13]). A coupled-feature-structure is the base class for both, which
has a left pole and a right pole:

Definition 1.

class coupled-feature-structure
Description An association of two feature structures.
Slots left-pole

right-pole

Transient structures are direct instantiations of coupled feature structures.
For each pole, it can be specified which domain it belongs to: semantic or syn-
tactic. By default, the left pole is semantic and the right pole is syntactic. A

20 R. van Trijp

construction is a subclass of a coupled-feature-structure that contains
additional slots that are relevant for their application, but which do not mat-
ter for our current purposes. The FCG-interpreter uses the domain of a pole of
a construction to decide whether it should operate on the semantic or on the
syntactic pole of a transient structure.

In order to integrate a meta-level fix into FCG-processing, we need to define
another subclass of a coupled-feature-structure, which inherits a left pole
and a right pole. Diagnostics are contained in the right pole (as they can be
considered as the ‘form’ of a problem) and repairs go in the left pole (as they
are the ‘meaning’ of a problem). In principle, no additional slots are required,
but here we include three slots called name, domain and score:

Definition 2.

class fix subclass of
coupled-feature-structure

Description A coupling of a diagnostic and a repair.
Slots name

domain
score

The name of a fix is a symbol for identifying it. The slot score could poten-
tially be exploited to orchestrate a competition between different fixes if there
are multiple ways of repairing the same problem, or if there are different prob-
lems that try to exploit the same repair. The domain slot specifies whether the
diagnostic of the fix should operate on the semantic or the syntactic pole of a
transient structure.

5.2 Extending FCG-apply

Let’s return to the problem of Pat sneezed the napkin off the table, where the
speaker wishes to express a Caused-Motion frame using the intransitive verb
sneeze, whose valence is incompatible with the requirements of the Caused-
Motion construction. However, coercing verbs into the Caused-Motion frame
is a recurrent and productive pattern in English [8], hence it is worthwhile to
implement a fix that first decides whether coercion is needed and indeed pos-
sible (i.e. whether the verb can be coerced), and if so, immediately performs
coercion.

We have already defined a meta-level feature structure in example 8 that is
capable of detecting the need and opportunity for coercion: if no argument struc-
ture construction has been applied, the diagnostic checks whether the speaker
wishes to express the Caused-Motion frame and whether the verb can at least
assign the Agent-role to one of its arguments, which is the only obligatory se-
mantic role. If so, the diagnostic is supposed to report a problem. In a fix,
however, the repair is immediately triggered. Figure 7 shows how the diagnostic
and repair are coupled to each other, with the diagnostic on the right and the
repair on the left (both in a graphical representation). In order for the fix to
be applied, the method fcg-apply (which is used for applying constructions)

A Reflective Architecture 21

irl-repair network

((bind arg-cxn ?cxn caused-motion-cxn)
 (get-latest-transient-structure ?ts-1)
 (get-match-bindings ?bindings)
 (coerce-cxn ?ts-2 ?ts-1 ?cxn ?bindings))

?top-unit
--
 sem-subunits

(== ?agent-unit ?patient-unit
 ?direction-unit
 ?event-unit)

--
 meaning

(== (cause-move ?ev)
(causer ?ev ?agent)
(moved ?ev ?patient)
(direction ?ev ?direction))

--
 footprints

(==0 arg-cxn)

?direction-unit
--
 args

(== ?direction)

?agent-unit
--
 args

(== ?agent)

?event-unit
--
 sem-cat

(==1 (sem-valence
 (==1
 (agent ?ev ?agent))))

?patient-unit
--
 args

(== ?patient)

Fig. 7. This ‘fix’ associates a diagnostic (right pole) with a repair (left pole). The
diagnostic first checks the need and opportunity for coercion. The repair then performs
coercion, thereby exploiting the bindings obtained by matching the diagnostic.

needs to specialize on applying a fix to a transient structure. This specialized
method looks as follows:

FCG-apply (fix transient-structure)

if the DOMAIN of FIX is SEMANTIC
then MATCH the DIAGNOSTIC of FIX

with SEMANTIC-POLE of TRANSIENT-STRUCTURE
else MATCH it with SYNTACTIC-POLE of TRANSIENT-STRUCTURE
if MATCH is found
then EXECUTE the IRL REPAIR NETWORK of FIX and RETURN RESULT
else do nothing

All fixes can be applied using this specialized method. Interested readers can
check a detailed discussion of how FCG achieves coercion in [33]. Summarizing
in words, the repair needs to perform the following linguistic operations:

1. Bind the Caused-Motion construction to the variable ?cxn. This is already
possible because the fix implements a construction-specific solution.

2. Get the latest transient structure (against which the diagnostic was matched)
and bind it to ?ts-1.

3. Get the bindings obtained from matching the diagnostic pole, and bind that
information to the variable ?bindings.

22 R. van Trijp

4. Coerce the construction bound to ?cxn into the transient structure bound to
?ts-1, using the bindings bound to ?bindings, to obtain a new transient-
structure. Bind that structure to ?ts-2.

5. If the repair is successful, return the result as a new search node so FCG can
continue routine processing.

5.3 Advantages and Issues of Fixes

Besides efficiency and the blending of fixes with routine processing, one of the
main advantages of a fix is that the bindings obtained from matching the diag-
nostic against the transient structure can be passed to other linguistic operators.
For example the operator coerce-cxn performs a powerful operation that skips
FCG’s matching phase and tries to merge both poles of a construction with a
transient structure [33]. Without the inhibitive constraints of matching, how-
ever, there is always the danger of an explosion of the possible merge-results,
which is exactly the reason why other precision-grammar formalisms that do
not have a matching phase implement additional constraints on the unification
of feature structures [12, p. 437]. By passing the match-bindings to coerce-cxn,
improbable coercions can be ruled out. Moreover, if the IRL-repairs are treated
as feature structures, they can be matched and merged as well, which opens up
the possibility of enriching the repairs with additional information in the form
of feature structures.

The most natural way of applying a meta-level fix is to first detect prob-
lems by matching the diagnostic against a transient structure and then solving
the problem by executing the IRL repair network. However, just like linguistic
constructions are bidirectional, fixes can in principle be applied in the other di-
rection as well. For instance, if a speaker introduces a novelty in conversation,
the listener might infer why he did so (i.e. detect what the speaker’s problem
was) by recognizing which repair was performed by the speaker. The prospects
of reasoning over fixes for learning and robust language processing is in itself an
exciting new research avenue that needs closer examination in future work.

In sum, it is technically speaking possible to blend meta-level fixes with rou-
tine processing: all that is required is an additional class fix and an fcg-apply
method that specializes on this new class. However, blending fixes with routine
processing requires more control on when a fix is allowed to fire: the fix in Figure
7 should only be applied after routine processing has tried all argument structure
constructions, and likewise, a fix that would insert a meta-level construction for
handling unknown words should only be executed after the application of ‘nor-
mal’ lexical constructions. Fortunately, FCG already provides various ways in
which the application of constructions (and fixes) can be regulated, such as spe-
cializing the search algorithm [5], using dependency networks [37], or by treating
fixes as ‘defaults’ using construction sets [2].

A Reflective Architecture 23

6 Discussion and Conclusion

This paper has demonstrated how the same representations and processing tech-
niques that support routine language processing can be reused for implementing
diagnostics and repairs, which makes it possible that language processing makes
use of strong computational reflection. All of the discussed examples have been
fully implemented; most of them without needing any extensions to the exist-
ing computational frameworks of FCG and IRL. The approach adopted in this
paper has both practical and scientific merits: it offers new ways for grammar
engineers to operationalize their hypotheses, and it paves the way to research on
how language strategies can be culturally acquired by autonomous agents.

The first set of examples demonstrated how diagnostics can be represented
as feature structures, which can be matched against transient structures by the
FCG-interpreter. Using feature structures provides a uniform way of representing
linguistic knowledge in transient structures, constructions and diagnostics, which
potentially allows diagnostics to be directly abstracted from recurrent patterns
and structures of a particular language.

Next, I have shown how repairs can be represented as constraint networks
using IRL. Such repairs consist of linguistic operators (such as coercion) that per-
form operations on linguistic instances (such as constructions). There are three
main advantages of using this approach. First, the dataflow of IRL constraints
allows the same repair to work for both production and parsing. Secondly, IRL
provides grammar engineers with a coherent and safer way of implementing and
testing adequate repairs. Finally, the use of IRL allows future research to fo-
cus on the origins of culturally acquired repairs by letting IRL autonomously
compose networks of linguistic operations and chunking successful networks.

The final part has shown how diagnostics and repairs can be coupled to each
other and become a meta-level ‘fix’ for processing problems. Using a small ex-
tension to the FCG-system for handling associations of diagnostics and repairs,
fixes can blend in with routine processing and efficiently handle problems im-
mediately as they occur. Future research needs to focus on how associations of
diagnostics and repairs can marry the strengths of constraint networks (IRL)
and feature structures (FCG) in a more powerful way.

Acknowledgements

This research was conducted at and funded by the Sony Computer Science Lab-
oratory Paris, with additional funding from the EU FP7 Alear project. I would
like to thank Luc Steels, director of the VUB AI-Lab at the Vrije Universiteit
Brussel and Sony CSL Paris, for his invaluable feedback and pioneering ideas. I
also thank my colleagues for their support, in particular Katrien Beuls for her
courtesy in allowing me to use Figure 1, Kevin Stadler for his comments, and
Joachim De Beule (whose earlier work on FCG included a system of ‘fixes’ that
inspired this research). All remaining errors are of course my own.

24 R. van Trijp

Bibliography

[1] Baldwin, T., Beavers, J., Bender, E.M., Flickinger, D., Kim, A., Oepen, S.:
Beauty and the beast: What running a broad-coverage precision grammar
over the BNC taught us about the grammar – and the corpus. In: Kepser,
S., Reis, M. (eds.) Linguistic Evidence: Empirical, Theoretical, and Com-
putational Perspectives, pp. 49–69. Mouton de Gruyter, Berlin (2005)

[2] Beuls, K.: Construction sets and unmarked forms: A case study for Hun-
garian verbal agreement. In: Steels, L. (ed.) Design Patterns in Fluid Con-
struction Grammar. John Benjamins, Amsterdam (2011)

[3] Beuls, K., Steels, L., Höfer, S.: The emergence of internal agreement sys-
tems. In: Steels, L. (ed.) Experiments in Cultural Language Evolution. John
Benjamins, Amsterdam (2012)

[4] Beuls, K., van Trijp, R., Wellens, P.: Diagnostics and Repairs in Fluid Con-
struction Grammar. In: Steels, L., Hild, M. (eds.) Language Grounding in
Robots. Springer, New York (2012)

[5] Bleys, J., Stadler, K., De Beule, J.: Search in linguistic processing. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[6] De Beule, J.: A formal deconstruction of Fluid Construction Grammar.
In: Steels, L. (ed.) Computational Issues in Fluid Construction Grammar.
Springer Verlag, Berlin (2012)

[7] Gerasymova, K., Spranger, M.: An Experiment in Temporal Language
Learning. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots.
Springer, New York (2012)

[8] Goldberg, A.E.: A Construction Grammar Approach to Argument Struc-
ture. Chicago UP, Chicago (1995)

[9] Haspelmath, M.: Pre-established categories don’t exist – consequences for
language description and typology. Linguistic Typology 11(1), 119–132
(2007)

[10] Haspelmath, M., Dryer, M.S., Gil, D., Comrie, B. (eds.): The World Atlas
of Language Structures. Oxford University Press, Oxford (2005)

[11] Hopper, P.: Emergent grammar. BLC 13, 139–157 (1987)
[12] Jurafsky, D., Martin, J.H.: Speech and Language Processing. An Intro-

duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall, New Jersey (2000)

[13] Keene, S.: Object-Oriented Programming in Common Lisp: A Program-
mar’s Guide to CLOS. Addison-Wesley, Boston (MA) (1988)

[14] Loetzsch, M., van Trijp, R., , Steels, L.: Typological and computational
investigations of spatial perspective. In: Wachsmuth, I., Knoblich, G. (eds.)
Modeling Communication with Robots and Virtual Humans, pp. 125–142.
LNCS 4930, Springer, Berlin (2008)

[15] Loetzsch, M., Wellens, P., De Beule, J., Bleys, J., van Trijp, R.: The babel2
manual. Tech. Rep. AI-Memo 01-08, AI-Lab VUB, Brussels (2008)

[16] Maes, P.: Issues in computational reflection. In: Maes, P., Nardi, D. (eds.)
Meta-Level Architectures and Reflection, pp. 21–35. Elsevier, Amsterdam
(1988)

A Reflective Architecture 25

[17] Pauw, S., Hilferty, J.: The emergence of quantifiers. In: Steels, L. (ed.)
Experiments in Cultural Language Evolution. John Benjamins, Amsterdam
(2012)

[18] Sierra, J.: A logic programming approach to parsing and production in Fluid
Construction Grammar. In: Steels, L. (ed.) Computational Issues in Fluid
Construction Grammar. Springer Verlag, Berlin (2012)

[19] Smith, B.C.: Procedural Reflection in Programming Languages. Ph.D. the-
sis, Massachusetts Institute of Technology, Cambridge MA (1982)

[20] Spranger, M., Pauw, S., Loetzsch, M., Steels, L.: Open-ended Procedural
Semantics. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots.
Springer, New York (2012)

[21] Spranger, M., Steels, L.: Emergent functional grammar for space. In: Steels,
L. (ed.) Experiments in Cultural Language Evolution. John Benjamins, Am-
sterdam (2012)

[22] Steels, L., De Beule, J., Wellens, P.: Fluid Construction Grammar on Real
Robots. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots.
Springer, New York (2012)

[23] Steels, L.: The emergence of grammar in communicating autonomous
robotic agents. In: Horn, W. (ed.) Proceedings of the 14th European Con-
ference on Artificial Intelligence (ECAI). pp. 764–769. IOS Press, Berlin,
Germany (August 2000)

[24] Steels, L.: Language as a complex adaptive system. In: Schoenauer, M.,
Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J., Schwefel, H.P. (eds.)
Parallel Problem Solving from Nature. pp. 17–28. LNCS 1917, Springer-
Verlag, Berlin (2000)

[25] Steels, L.: A design pattern for phrasal constructions. In: Steels, L. (ed.)
Design Patterns in Fluid Construction Grammar. John Benjamins, Ams-
terdam (2011)

[26] Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

[27] Steels, L.: A first encounter with Fluid Construction Grammar. In: Steels,
L. (ed.) Design Patterns in Fluid Construction Grammar. John Benjamins,
Amsterdam (2011)

[28] Steels, L.: Design methods for Fluid Construction Grammar. In: Steels,
L. (ed.) Computational Issues in Fluid Construction Grammar. Springer
Verlag, Berlin (2012)

[29] Steels, L. (ed.): Experiments in Cultural Language Evolution. John Ben-
jamins, Amsterdam (2012)

[30] Steels, L.: Modeling the cultural evolution of language. Physics of Life Re-
views (2012)

[31] Steels, L.: Self-organization and selection in cultural language evolution. In:
Steels, L. (ed.) Experiments in Cultural Language Evolution. John Ben-
jamins, Amsterdam (2012)

[32] Steels, L., De Beule, J.: Unify and merge in Fluid Construction Grammar.
In: Vogt, P., Sugita, Y., Tuci, E., Nehaniv, C. (eds.) Symbol Grounding and
Beyond. pp. 197–223. LNAI 4211, Springer, Berlin (2006)

26 R. van Trijp

[33] Steels, L., van Trijp, R.: How to make construction grammars fluid and
robust. In: Steels, L. (ed.) Design Patterns in Fluid Construction Grammar.
John Benjamins, Amsterdam (2011)

[34] van Trijp, R.: Grammaticalization and semantic maps: Evidence from arti-
ficial language evolution. Linguistic Discovery 8(1), 310–326 (2010)

[35] van Trijp, R.: A design pattern for argument structure constructions. In:
Steels, L. (ed.) Design Patterns in Fluid Construction Grammar. John Ben-
jamins, Amsterdam (2011)

[36] van Trijp, R.: The emergence of case marking systems for marking event
structure. In: Steels, L. (ed.) Experiments in Cultural Language Evolution.
John Benjamins, Amsterdam (2012)

[37] Wellens, P.: Organizing constructions in networks. In: Steels, L. (ed.) De-
sign Patterns in Fluid Construction Grammar. John Benjamins, Amsterdam
(2011)

